年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析

    2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析第1页
    2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析第2页
    2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析

    展开

    这是一份2022届江苏省南京市二十九中学、汇文校中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了答题时请按要求用笔,7的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在中,,将绕点逆时针旋转,使点落在线段上的点处,点落在点处,则两点间的距离为( )

    A. B. C. D.
    2.的倒数是(  )
    A.﹣ B.2 C.﹣2 D.
    3.八边形的内角和为(  )
    A.180° B.360° C.1 080° D.1 440°
    4.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是(  )
    A.=2 B.=2
    C.=2 D.=2
    6.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是(  )

    A.200米 B.200米 C.220米 D.100米
    7.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是(  )

    A.2011年我国的核电发电量占总发电量的比值约为1.5%
    B.2006年我国的总发电量约为25000亿千瓦时
    C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
    D.我国的核电发电量从2008年开始突破1000亿千瓦时
    8.如图,从圆外一点引圆的两条切线,,切点分别为,,如果, ,那么弦AB的长是( )

    A. B. C. D.
    9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=(k<0)的图象经过点B,则k的值为(  )

    A.﹣12 B.﹣32 C.32 D.﹣36
    10.7的相反数是( )
    A.7 B.-7 C. D.-
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.中,,,高,则的周长为______。
    12.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是 cm.
    13.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
    14.化简:①=_____;②=_____;③=_____.
    15.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).
    16.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.
    三、解答题(共8题,共72分)
    17.(8分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.

    (1)当时,求四边形的面积;
    (2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;
    (3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.
    18.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    19.(8分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.
    (1)求证:≌;
    (2)当时,求四边形AECF的面积.

    20.(8分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.

    21.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
    请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为   .的面积为   .
    22.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
    23.(12分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
    A(-1,0),B(4,0),∠ACB=90°.
    (1)求过A、B、C三点的抛物线解析式;
    (2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
    (3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.

    图1 备用图
    24.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    先利用勾股定理计算出AB,再在Rt△BDE中,求出BD即可;
    【详解】
    解:∵∠C=90°,AC=4,BC=3,
    ∴AB=5,
    ∵△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,
    ∴AE=AC=4,DE=BC=3,
    ∴BE=AB-AE=5-4=1,
    在Rt△DBE中,BD=,
    故选A.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    2、B
    【解析】
    根据乘积是1的两个数叫做互为倒数解答.
    【详解】
    解:∵×1=1
    ∴的倒数是1.
    故选B.
    【点睛】
    本题考查了倒数的定义,是基础题,熟记概念是解题的关键.
    3、C
    【解析】
    试题分析:根据n边形的内角和公式(n-2)×180º 可得八边形的内角和为(8-2)×180º=1080º,故答案选C.
    考点:n边形的内角和公式.
    4、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    5、A
    【解析】
    分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.
    详解:设原计划每天施工x米,则实际每天施工(x+30)米,
    根据题意,可列方程:=2,
    故选A.
    点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.
    6、D
    【解析】
    在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
    【详解】
    ∵在热气球C处测得地面B点的俯角分别为45°,
    ∴BD=CD=100米,
    ∵在热气球C处测得地面A点的俯角分别为30°,
    ∴AC=2×100=200米,
    ∴AD==100米,
    ∴AB=AD+BD=100+100=100(1+)米,
    故选D.
    【点睛】
    本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
    7、B
    【解析】
    由折线统计图和条形统计图对各选项逐一判断即可得.
    【详解】
    解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
    B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
    C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
    D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
    故选:B.
    【点睛】
    本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
    8、C
    【解析】
    先利用切线长定理得到,再利用可判断为等边三角形,然后根据等边三角形的性质求解.
    【详解】
    解:,PB为的切线,


    为等边三角形,

    故选C.
    【点睛】
    本题考查切线长定理,掌握切线长定理是解题的关键.
    9、B
    【解析】
    解:
    ∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,
    ∴OA=5,AB∥OC,
    ∴点B的坐标为(8,﹣4),
    ∵函数y=(k<0)的图象经过点B,
    ∴﹣4=,得k=﹣32.
    故选B.
    【点睛】
    本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.
    10、B
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    7的相反数是−7,
    故选:B.
    【点睛】
    此题考查相反数,解题关键在于掌握其定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、32或42
    【解析】
    根据题意,分两种情况讨论:①若∠ACB是锐角,②若∠ACB是钝角,分别画出图形,利用勾股定理,即可求解.
    【详解】
    分两种情况讨论:
    ①若∠ACB是锐角,如图1,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9+5+15+13=42,
    ②若∠ACB是钝角,如图2,
    ∵,,高,
    ∴在Rt∆ABD中,,
    即:,
    同理:,
    ∴的周长=9-5+15+13=32,
    故答案是:32或42.

    【点睛】
    本题主要考查勾股定理,根据题意,画出图形,分类进行计算,是解题的关键.
    12、2或14
    【解析】
    分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.
    【详解】
    ①当弦AB和CD在圆心同侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AE=8cm,CF=6cm,
    ∵OA=OC=10cm,
    ∴EO=6cm,OF=8cm,
    ∴EF=OF−OE=2cm;
    ②当弦AB和CD在圆心异侧时,如图,

    ∵AB=16cm,CD=12cm,
    ∴AF=8cm,CE=6cm,
    ∵OA=OC=10cm,
    ∴OF=6cm,OE=8cm,
    ∴EF=OF+OE=14cm.
    ∴AB与CD之间的距离为14cm或2cm.
    故答案为:2或14.
    13、相离
    【解析】
    设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
    【详解】
    设圆O的半径是r,
    则πr2=9π,
    ∴r=3,
    ∵点0到直线l的距离为π,
    ∵3<π,
    即:r<d,
    ∴直线l与⊙O的位置关系是相离,
    故答案为:相离.
    【点睛】
    本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.
    14、4 5 5
    【解析】
    根据二次根式的性质即可求出答案.
    【详解】
    ①原式=4;②原式==5;③原式==5,
    故答案为:①4;②5;③5
    【点睛】
    本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
    15、甲.
    【解析】
    乙所得环数的平均数为:=5,
    S2=[+++…+]
    =[++++]
    =16.4,
    甲的方差<乙的方差,所以甲较稳定.
    故答案为甲.
    点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.
    16、一
    【解析】
    根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.
    【详解】
    ∵关于x的一元二次方程mx2-2x-1=0无实数根,
    ∴m≠0且△=(-2)2-4m×(-1)<0,
    ∴m<-1,
    ∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.
    故答案为一.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.

    三、解答题(共8题,共72分)
    17、(1)4;(2),;(3).
    【解析】
    (1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;
    (2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;
    (3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.
    【详解】
    解:(1)过点D作DE⊥x轴于点E

    当时,得到,
    顶点,
    ∴DE=1
    由,得,;
    令,得;
    ,,,
    ,OC=3

    (2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,

    由翻折得:,



    轴,,



    由勾股定理得:,





    ,,

    解得:(不符合题意,舍去),;
    ,.
    (3)原抛物线的顶点在直线上,
    直线交轴于点,
    如图2,过点作轴于,

    由题意,平移后的新抛物线顶点为,解析式为,
    设点,,则,,,
    过点作于,于,轴于,




    、分别平分,,

    点在抛物线上,

    根据题意得:
    解得:

    【点睛】
    此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.
    18、(1)y=-x2-2x+1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(-2,6)(2)存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2)
    【解析】
    解:(1)∵直线y=x+1与x轴、y轴分别交于A、B两点,∴A(-1,0),B(0,1).
    ∵抛物线y=-x2+bx+c经过A、B两点,
    ∴,解得.
    ∴抛物线解析式为y=-x2-2x+1.
    令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,
    ∴C(1,0).
    (2)如图1,
    设D(t,0).
    ∵OA=OB,∴∠BAO=15°.
    ∴E(t,t+1),P(t,-t2-2t+1).
    PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.
    ∴当t=-2时,线段PE的长度有最大值1,此时P(-2,6).
    (2)存在.如图2,过N点作NH⊥x轴于点H.
    设OH=m(m>0),∵OA=OB,∴∠BAO=15°.
    ∴NH=AH=1-m,∴yQ=1-m.
    又M为OA中点,∴MH=2-m.
    当△MON为等腰三角形时:
    ①若MN=ON,则H为底边OM的中点,
    ∴m=1,∴yQ=1-m=2.
    由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ②若MN=OM=2,则在Rt△MNH中,
    根据勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,
    化简得m2-6m+8=0,解得:m1=2,m2=1(不合题意,舍去).
    ∴yQ=2,由-xQ2-2xQ+1=2,解得.
    ∴点Q坐标为(,2)或(,2).
    ③若ON=OM=2,则在Rt△NOH中,
    根据勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,
    化简得m2-1m+6=0,∵△=-8<0,
    ∴此时不存在这样的直线l,使得△MON为等腰三角形.
    综上所述,存在这样的直线l,使得△MON为等腰三角形.所求Q点的坐标为
    (,2)或(,2)或(,2)或(,2).
    (1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标.
    (2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值.
    (2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标. “△MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解.
    19、(1)见解析;(2)
    【解析】
    (1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
    (2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴,,,
    ∵点E、F分别是BC、AD的中点,
    ∴,,
    ∴,
    在和中

    ∴≌();
    (2)作于H,

    ∵四边形ABCD是平行四边形,
    ∴,,
    ∵点E、F分别是BC、AD的中点,,
    ∴,,
    ∴,,
    ∴四边形AECF是平行四边形,
    ∵,
    ∴四边形AECF是菱形,
    ∴,
    ∵,
    ∴,
    即是等边三角形,

    由勾股定理得:,
    ∴四边形AECF的面积是.
    【点睛】
    本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
    20、(1)相切,理由见解析;(1)1.
    【解析】
    (1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
    (1)根据勾股定理得出方程,求出方程的解即可.
    【详解】
    (1)直线BC与⊙O的位置关系是相切,

    理由是:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAB,
    ∴∠OAD=∠CAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODB=90°,即OD⊥BC,
    ∵OD为半径,
    ∴直线BC与⊙O的位置关系是相切;
    (1)设⊙O的半径为R,
    则OD=OF=R,
    在Rt△BDO中,由勾股定理得:OB=BD+OD,
    即(R+1) =(1)+R,
    解得:R=1,
    即⊙O的半径是1.
    【点睛】
    此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
    21、(1)见解析;(2)见解析;(3);(4)4.
    【解析】
    (1)根据C点坐标确定原点位置,然后作出坐标系即可;
    (2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
    (3)根据点在坐标系中的位置写出其坐标即可
    (4)利用长方形的面积剪去周围多余三角形的面积即可.
    【详解】
    解:(1)如图所示:
    (2)如图所示:
    (3)结合图形可得:;
    (4) .

    【点睛】
    此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
    22、(1)120件;(2)150元.
    【解析】
    试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
    试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
    由题意可得:,解得,经检验是原方程的根.
    (2)设每件衬衫的标价至少是元.
    由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
    由题意可得:
    解得:,所以,,即每件衬衫的标价至少是150元.
    考点:1、分式方程的应用 2、一元一次不等式的应用.
    23、见解析
    【解析】
    分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
    (2)分两种情况进行讨论即可.
    (3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
    详解:(1)易证,得,
    ∴OC=2,∴C(0,2),
    ∵抛物线过点A(-1,0),B(4,0)
    因此可设抛物线的解析式为
    将C点(0,2)代入得:,即
    ∴抛物线的解析式为
    (2)如图2,

    当时,则P1(,2),
    当 时,
    ∴OC∥l,
    ∴,
    ∴P2H=·OC=5,
    ∴P2 (,5)
    因此P点的坐标为(,2)或(,5).
    (3)存在.
    假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
    如图3,

    当平行四边形是平行四边形时,M(,),(,),
    当平行四边形AONM是平行四边形时,M(,),N(,),
    如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则

    ∵点N在抛物线上,
    ∴-m=-·(-+1)( --4)=-,
    ∴m=,
    此时M(,), N(-,-).
    综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
    点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
    24、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.

    相关试卷

    江苏省南京市建邺三校联合~2022年中考数学对点突破模拟试卷含解析:

    这是一份江苏省南京市建邺三校联合~2022年中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了﹣3的绝对值是,不等式的最小整数解是,已知抛物线y=ax2﹣,已知x+=3,则x2+=等内容,欢迎下载使用。

    江苏省南京市建邺区三校联合~市级名校2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份江苏省南京市建邺区三校联合~市级名校2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2022届江苏省南师大附中树人校中考数学对点突破模拟试卷含解析:

    这是一份2022届江苏省南师大附中树人校中考数学对点突破模拟试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列运算,结果正确的是,下列函数是二次函数的是,不等式组的解集在数轴上可表示为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map