年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析

    2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析第1页
    2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析第2页
    2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2022届江苏省苏州吴江市青云中学毕业升学考试模拟卷数学卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,估算的值是在,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如果代数式有意义,则实数x的取值范围是( )
    A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
    2.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )

    A. B. C. D.
    3.当ab>0时,y=ax2与y=ax+b的图象大致是(  )
    A. B. C. D.
    4.若等式x2+ax+19=(x﹣5)2﹣b成立,则 a+b的值为(  )
    A.16 B.﹣16 C.4 D.﹣4
    5.估算的值是在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    6.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为(   )

    A.7 B.8 C.9 D.10
    7.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是(  )

    A.A或B B.B或C C.C或D D.D或A
    8.下列运算正确的是(  )
    A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a6
    9.若关于x的分式方程的解为非负数,则a的取值范围是(  )
    A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4
    10.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )

    A.60° B.65° C.55° D.50°
    二、填空题(共7小题,每小题3分,满分21分)
    11.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_______.
    12.分解因式:4a2-4a+1=______.
    13.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.

    14.已知xy=3,那么的值为______ .
    15.已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为________.
    16.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
    17.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?

    19.(5分)计算下列各题:
    (1)tan45°−sin60°•cos30°;
    (2)sin230°+sin45°•tan30°.
    20.(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)

    21.(10分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.

    (1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
    (2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
    22.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
    (1)求m的值和反比例函数的表达式;
    (2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?

    23.(12分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(4,0)与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线1,交抛物线与点Q.求抛物线的解析式;当点P在线段OB上运动时,直线1交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;在点P运动的过程中,坐标平面内是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

    24.(14分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
    【详解】
    由题意得,x+3≥0,x≠0,
    解得x≥−3且x≠0,
    故选C.
    【点睛】
    本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
    2、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,


    故选C.
    3、D
    【解析】
    ∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;
    当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.
    故选B.
    4、D
    【解析】
    分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.
    详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,
    可得a=-10,b=6,
    则a+b=-10+6=-4,
    故选D.
    点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
    5、C
    【解析】
    求出<<,推出4<<5,即可得出答案.
    【详解】
    ∵<<,
    ∴4<<5,
    ∴的值是在4和5之间.
    故选:C.
    【点睛】
    本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
    6、B
    【解析】
    根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
    【详解】
    在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
    ∴AC===10,
    ∵DE是△ABC的中位线,
    ∴DF∥BM,DE=BC=3,
    ∴∠EFC=∠FCM,
    ∵∠FCE=∠FCM,
    ∴∠EFC=∠ECF,
    ∴EC=EF=AC=5,
    ∴DF=DE+EF=3+5=2.
    故选B.

    7、B
    【解析】
    根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.
    【详解】
    ∵AB=BC=CD=1,
    ∴当点A为原点时,|a|+|b|>2,不合题意;
    当点B为原点时,|a|+|b|=2,符合题意;
    当点C为原点时,|a|+|b|=2,符合题意;
    当点D为原点时,|a|+|b|>2,不合题意;
    故选:B.
    【点睛】
    此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.
    8、D
    【解析】
    根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.
    【详解】
    A、a2+a2=2a2,故错误;
    B、(a+b)2=a2+2ab+b2,故错误;
    C、a6÷a2=a4,故错误;
    D、(-2a3)2=4a6,正确;
    故选D.
    【点睛】
    本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.
    9、C
    【解析】
    试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a的范围即可.
    解:去分母得:2(2x﹣a)=x﹣2,
    解得:x=,
    由题意得:≥1且≠2,
    解得:a≥1且a≠4,
    故选C.
    点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1.
    10、A
    【解析】
    试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
    解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
    ∴∠BCD+∠CDE=540°﹣300°=240°,
    ∵∠BCD、∠CDE的平分线在五边形内相交于点O,
    ∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
    ∴∠P=180°﹣120°=60°.
    故选A.
    考点:多边形内角与外角;三角形内角和定理.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率= .故答案为.
    12、
    【解析】
    根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.
    【详解】
    解:.
    故答案为.
    【点睛】
    本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.
    13、4.1.
    【解析】
    取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.
    【详解】
    解:取CD的值中点M,连接GM,FM.
    ∵AG=CG,AE=EB,
    ∴GE是△ABC的中位线
    ∴EG=BC,
    同理可证:FM=BC,EF=GM=AD,
    ∵AD=BC=6,
    ∴EG=EF=FM=MG=3,
    ∴四边形EFMG是菱形,
    ∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,
    ∴△EGF的面积的最大值为S四边形EFMG=4.1,
    故答案为4.1.

    【点睛】
    本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.
    14、±2
    【解析】
    分析:先化简,再分同正或同负两种情况作答.
    详解:因为xy=3,所以x、y同号,
    于是原式==,
    当x>0,y>0时,原式==2;
    当x

    相关试卷

    2022年江苏省无锡市南菁中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022年江苏省无锡市南菁中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了计算-5x2-3x2的结果是,7的相反数是等内容,欢迎下载使用。

    2022年江苏省宜兴市实验中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022年江苏省宜兴市实验中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了估计-1的值在等内容,欢迎下载使用。

    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析:

    这是一份2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map