搜索
    上传资料 赚现金
    英语朗读宝

    2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析

    2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析第1页
    2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析第2页
    2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析

    展开

    这是一份2022届江苏省苏州昆山市石牌中学中考数学对点突破模拟试卷含解析,共28页。试卷主要包含了某一公司共有51名员工,的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )

    A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
    C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
    2.下列说法正确的是(  )
    A.某工厂质检员检测某批灯泡的使用寿命采用普查法
    B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6
    C.12名同学中有两人的出生月份相同是必然事件
    D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是
    3.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= ,其中正确结论的个数是(   )

    A.1 B.2 C.3 D.4
    4.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是(  )

    A.①②③ B.①②④ C.②③④ D.③④⑤
    5.若55+55+55+55+55=25n,则n的值为(  )
    A.10 B.6 C.5 D.3
    6.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
    A.-1或4 B.-1或-4
    C.1或-4 D.1或4
    7.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为(  )
    A.-1 B.-11 C.1 D.11
    8.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会( )
    A.平均数和中位数不变 B.平均数增加,中位数不变
    C.平均数不变,中位数增加 D.平均数和中位数都增大
    9.的相反数是(  )
    A. B.2 C. D.
    10.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

    A. B.8 C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)

    12.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.

    13.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.

    14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.

    15.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.

    16.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是_____.
    三、解答题(共8题,共72分)
    17.(8分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.
    (1)a= ,b= ;
    (2)确定y2与x之间的函数关系式:
    (3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

    18.(8分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
    (1)求直线和双曲线的函数表达式;
    (2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
    ①当点C在双曲线上时,求t的值;
    ②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
    ③当时,请直接写出t的值.

    19.(8分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
    (1)求k的值;
    (1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.

    20.(8分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
    (1)n= _____________;
    (2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
    (3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
    (4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.

    21.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)

    22.(10分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)

    23.(12分)如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.

    (1)求抛物线的解析式;
    (2)若PN:PM=1:4,求m的值;
    (3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+的最小值.
    24.某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
    (1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
    (2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
    【详解】
    ∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
    ∴AB=BD , AC=CD ,
    ∵AB=AC ,
    ∴AB=BD=CD=AC ,
    ∴ 四边形 ABDC 是菱形;
    故选A.
    【点睛】
    本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
    2、B
    【解析】
    分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.
    【详解】
    A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;
    B. 根据平均数是4求得a的值为2,则方差为 [(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;
    C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;
    D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.
    故答案选B.
    【点睛】
    本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.
    3、C
    【解析】
    ∵四边形ABCD是正方形,
    ∴AD=BC,∠DAB=∠ABC=90°,
    ∵BP=CQ,
    ∴AP=BQ,
    在△DAP与△ABQ中, ,
    ∴△DAP≌△ABQ,
    ∴∠P=∠Q,
    ∵∠Q+∠QAB=90°,
    ∴∠P+∠QAB=90°,
    ∴∠AOP=90°,
    ∴AQ⊥DP;
    故①正确;
    ∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
    ∴∠DAO=∠P,
    ∴△DAO∽△APO,
    ∴ ,
    ∴AO2=OD•OP,
    ∵AE>AB,
    ∴AE>AD,
    ∴OD≠OE,
    ∴OA2≠OE•OP;故②错误;
    在△CQF与△BPE中 ,
    ∴△CQF≌△BPE,
    ∴CF=BE,
    ∴DF=CE,
    在△ADF与△DCE中, ,
    ∴△ADF≌△DCE,
    ∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
    即S△AOD=S四边形OECF;故③正确;
    ∵BP=1,AB=3,
    ∴AP=4,
    ∵△AOP∽△DAP,
    ∴ ,
    ∴BE=,∴QE=,
    ∵△QOE∽△PAD,
    ∴ ,
    ∴QO=,OE=,
    ∴AO=5﹣QO=,
    ∴tan∠OAE==,故④正确,
    故选C.
    点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.
    4、C
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由图象可知:a>0,c<0,
    ∴ac<0,故①错误;
    ②由于对称轴可知:<1,
    ∴2a+b>0,故②正确;
    ③由于抛物线与x轴有两个交点,
    ∴△=b2﹣4ac>0,故③正确;
    ④由图象可知:x=1时,y=a+b+c<0,
    故④正确;
    ⑤当x>时,y随着x的增大而增大,故⑤错误;
    故选:C.
    【点睛】
    本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.
    5、D
    【解析】
    直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
    【详解】
    解:∵55+55+55+55+55=25n,
    ∴55×5=52n,
    则56=52n,
    解得:n=1.
    故选D.
    【点睛】
    此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
    6、C
    【解析】
    试题解析:∵x=-2是关于x的一元二次方程的一个根,
    ∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
    整理,得(a+2)(a-1)=0,
    解得 a1=-2,a2=1.
    即a的值是1或-2.
    故选A.
    点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
    7、B
    【解析】
    先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
    【详解】
    由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
    所以
    解这个方程组,得
    所以2△2=a+b+c=-35-2c+24+c+c=-2.
    故选B.
    【点睛】
    本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
    8、B
    【解析】
    本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.
    【详解】
    解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然

    由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
    故选B.
    【点睛】
    本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.
    9、D
    【解析】
    因为-+=0,所以-的相反数是.
    故选D.
    10、D
    【解析】
    ∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
    设⊙O的半径为r,则OC=r-2,
    在Rt△AOC中,∵AC=1,OC=r-2,
    ∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
    ∴AE=2r=3.
    连接BE,

    ∵AE是⊙O的直径,∴∠ABE=90°.
    在Rt△ABE中,∵AE=3,AB=8,∴.
    在Rt△BCE中,∵BE=6,BC=1,∴.故选D.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、π
    【解析】
    ∵∠C=30°,
    ∴∠AOB=60°,
    ∴.即的长为.
    12、
    【解析】
    分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
    详解:由勾股定理得:= ,即(0,4).
    矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
    A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
    点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
    13、
    【解析】
    过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
    【详解】
    如图,过点B作BD⊥AC于D,设AH=BC=2x,

    ∵AB=AC,AH⊥BC,
    ∴BH=CH=BC=x,
    根据勾股定理得,AC==x,
    S△ABC=BC•AH=AC•BD,
    即•2x•2x=•x•BD,
    解得BC=x,
    所以,sin∠BAC=.
    故答案为.
    14、
    【解析】
    首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
    【详解】
    如图,设与AD交于N,EF与AD交于M,

    根据折叠的性质可得:,,,
    四边形ABCD是矩形,
    ,,,



    设,则,
    在中,,


    即,
    ,,,
    ≌,





    由折叠的性质可得:,




    故答案为.
    【点睛】
    本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
    15、50°
    【解析】
    利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.
    【详解】
    ∵AB∥CD,
    ∴∠EFC=∠2=130°,
    ∴∠1=180°-∠EFC=50°,
    故答案为50°
    【点睛】
    本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.
    16、
    【解析】
    首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案.
    【详解】
    列表如下:

    ﹣2
    ﹣1
    2
    ﹣2

    2
    ﹣4
    ﹣1
    2

    ﹣2
    2
    ﹣4
    ﹣2

    由表可知,共有6种等可能结果,其中积为正数的有2种结果,
    所以积为正数的概率为,
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.

    三、解答题(共8题,共72分)
    17、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.
    【解析】
    (1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;
    (2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;
    (3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.
    【详解】
    (1)由y1图像上点(10,480),得到10人的费用为480元,
    ∴a=;
    由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,
    ∴b=;
    (2)
    0≤x≤10时,设y2=k2x,把(10, 800)代入得10k2=800,
    解得k2=80,
    ∴y2=80x,
    x>10,设y2=kx+b,把(10, 800)和(20,1440)代入得
    解得
    ∴y2=64x+160

    (3)设B团有n人,则A团的人数为(50-n)
    当0≤n≤10时80n+48(50-n)=3040,
    解得n=20(不符合题意舍去)
    当n>10时,
    解得n=30.
    则50-n=20人,
    则A团有20人,B团有30人.
    【点睛】
    此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.
    18、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
    【解析】
    (1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
    (2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
    ②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
    ③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
    【详解】
    (1)∵直线经过点和
    ∴将点代入得
    解得
    故直线的表达式为
    将点代入直线的表达式得
    解得

    ∵双曲线经过点
    ,解得
    故双曲线的表达式为;
    (2)①轴,点A的坐标为
    ∴点C的横坐标为12
    将其代入双曲线的表达式得
    ∴C的纵坐标为,即
    由题意得,解得
    故当点C在双曲线上时,t的值为;
    ②当时,的大小不发生变化,求解过程如下:
    若点D与点A重合
    由题意知,点C坐标为
    由两点距离公式得:


    由勾股定理得,即
    解得
    因此,在范围内,点D与点A不重合,且在点A左侧
    如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
    由(1)知,直线AB的表达式为
    令得,则,即
    点K为CD的中点,
    (直角三角形中,斜边上的中线等于斜边的一半)
    同理可得:

    A、D、B、C四点共圆,点K为圆心
    (圆周角定理)


    ③过点B作于M
    由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
    此时,四边形ACBD是矩形,则,即
    因此,分以下2种情况讨论:
    如图2,当时,过点C作于N







    ,即


    由勾股定理得

    解得或(不符题设,舍去)
    当时,同理可得:
    解得或(不符题设,舍去)
    综上所述,t的值为或.

    【点睛】
    本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
    19、(1)k=11;(1)C(2,0).
    【解析】
    试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
    (1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
    试题解析:
    (1)∵点A在直线y=2x上,其横坐标为1.
    ∴y=2×1=6,∴A(1,6),
    把点A(1,6)代入,得,
    解得:k=11;
    (1)由(1)得:,
    ∵点B为此反比例函数图象上一点,其纵坐标为2,
    ∴,解得x= 4,∴B(4,2),
    ∵CB∥OA,
    ∴设直线BC的解析式为y=2x+b,
    把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
    ∴直线BC的解析式为y=2x﹣9,
    当y=0时,2x﹣9=0,解得:x=2,
    ∴C(2,0).
    20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
    【解析】
    (2)将(0,-2)代入二次函数解析式中即可求出n值;
    (2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
    (2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
    (4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
    【详解】
    解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
    ∴n=﹣2.
    故答案为﹣2.
    (2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
    ∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
    解得:m2=0,m2=﹣2.
    ∵m≠0,
    ∴m=﹣2.
    (2)∵二次函数解析式为y=mx2﹣2mx﹣2,
    ∴二次函数图象的对称轴为直线x=﹣=2.
    ∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
    ∴另一交点的横坐标为2×2﹣4=﹣2,
    ∴另一个交点的坐标为(﹣2,5).
    故答案为(﹣2,5).
    (4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
    ∴0=9m﹣6m﹣2,
    ∴m=2,
    ∴二次函数解析式为y=x2﹣2x﹣2.
    设直线AC的解析式为y=kx+b(k≠0),
    将A(2,0)、C(0,﹣2)代入y=kx+b,得:
    ,解得:,
    ∴直线AC的解析式为y=x﹣2.
    过点P作PD⊥x轴于点D,交AC于点Q,如图所示.

    设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
    ∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
    ∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
    ∴当a=时,△PAC的面积取最大值,最大值为 .
    【点睛】
    本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
    21、
    【解析】
    过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.
    【详解】
    过点A作,垂足为G.则,在中,
    ,
    由题意,得,
    ∴,
    连接FD并延长与BA的延长线交于点H. 由题意,得.在中,
    ,
    ∴.
    在中,.
    答:支角钢CD的长为45cm,EF的长为.

    考点:三角函数的应用
    22、43米
    【解析】
    作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
    【详解】
    解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.

    在Rt△ABD中,∵∠ADB=45°,
    ∴AB=BD=x,
    在Rt△AEC中,
    tan∠ACE==tan37.5°≈0.77,
    ∴=0.77,
    解得x≈43,
    答:“小雁塔”的高AB的长度约为43米.
    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
    23、(1);(2)m=3;(3)
    【解析】
    (1)本题需先根据图象过A点,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.
    【详解】
    解:(1)∵A(4,0)在抛物线上,
    ∴0=16a+4(a+2)+2,解得a=﹣,
    ∴抛物线的解析式为y=;
    (2)∵
    ∴令x=0可得y=2,
    ∴OB=2,
    ∵OP=m,
    ∴AP=4﹣m,
    ∵PM⊥x轴,
    ∴△OAB∽△PAN,
    ∴,
    ∴,
    ∴,
    ∵M在抛物线上,
    ∴PM=+2,
    ∵PN:MN=1:3,
    ∴PN:PM=1:4,
    ∴,
    解得m=3或m=4(舍去);
    (3)在y轴上取一点Q,使,如图,

    由(2)可知P1(3,0),且OB=2,
    ∴,且∠P2OB=∠QOP2,
    ∴△P2OB∽△QOP2,
    ∴,
    ∴当Q(0,)时,QP2=,
    ∴AP2+BP2=AP2+QP2≥AQ,
    ∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,
    ∵A(4,0),Q(0,),
    ∴AQ==,
    即AP2+BP2的最小值为
    【点睛】
    本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.
    24、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【解析】
    试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
    (2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
    试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
    根据题意,2000x+2500(30-x)=68000,
    解得x=14,
    ∴30-x=16,
    答:种植A种生姜14亩,种植B种生姜16亩;
    (2)由题意得,x≥(30-x),解得x≥10,
    设全部收购该基地生姜的年总收入为y元,则
    y=8×2000x+7×2500(30-x)=-1500x+525000,
    ∵y随x的增大而减小,∴当x=10时,y有最大值,
    此时,30-x=20,y的最大值为510000元,
    答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.

    相关试卷

    2023-2024学年江苏省苏州昆山市石牌中学九上数学期末综合测试模拟试题含答案:

    这是一份2023-2024学年江苏省苏州昆山市石牌中学九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了已知则,点P等内容,欢迎下载使用。

    江苏省苏州昆山市石牌中学2022-2023学年七下数学期末检测模拟试题含答案:

    这是一份江苏省苏州昆山市石牌中学2022-2023学年七下数学期末检测模拟试题含答案,共6页。试卷主要包含了函数y=x-1的图象是,下列命题,是真命题的是等内容,欢迎下载使用。

    2023年江苏省苏州市昆山市城北中学中考数学一模试卷(含解析):

    这是一份2023年江苏省苏州市昆山市城北中学中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map