2022届江苏省南京江北新区七校联考中考三模数学试题含解析
展开
这是一份2022届江苏省南京江北新区七校联考中考三模数学试题含解析,共19页。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.在△ABC中,若=0,则∠C的度数是( )
A.45° B.60° C.75° D.105°
2.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
A.60° B.120° C.60°或120° D.30°或120°
3.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将以DE为折痕向右折叠,AE与BC交于点F,则的面积为( )
A.4 B.6 C.8 D.10
4.对于反比例函数y=﹣,下列说法不正确的是( )
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大
C.图象经过点(1,﹣2)
D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2
5.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
6.如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为( )
A.20° B.35° C.45° D.70°
7.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )
A. B. C. D.
8.下表是某校合唱团成员的年龄分布.
年龄/岁
13
14
15
16
频数
5
15
x
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
9.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50° B.20° C.60° D.70°
10.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是( )
A.155° B.145° C.135° D.125°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
12.如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=_____°.
13.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
14.将一副三角板如图放置,若,则的大小为______.
15.的相反数是_____.
16.分解因式8x2y﹣2y=_____.
三、解答题(共8题,共72分)
17.(8分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
18.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
求证:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的长.
19.(8分)如图,一次函数y=kx+b的图象与反比例函数的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.
(1)求一次函数和反比例函数的表达式;
(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数的图象于点N,若NM=NP,求n的值.
20.(8分)一位运动员推铅球,铅球运行时离地面的高度(米)是关于运行时间(秒)的二次函数.已知铅球刚出手时离地面的高度为米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.
(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;
(Ⅱ)求这个二次函数的解析式和自变量的取值范围.
21.(8分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
22.(10分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
23.(12分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?
24.如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
【详解】
由题意,得 cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.
2、C
【解析】
根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
【详解】
如图所示,
∵OD⊥AB,
∴D为AB的中点,即AD=BD=,
在Rt△AOD中,OA=5,AD=,
∴sin∠AOD=,
又∵∠AOD为锐角,
∴∠AOD=60°,
∴∠AOB=120°,
∴∠ACB=∠AOB=60°,
又∵圆内接四边形AEBC对角互补,
∴∠AEB=120°,
则此弦所对的圆周角为60°或120°.
故选C.
【点睛】
此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
3、C
【解析】
根据折叠易得BD,AB长,利用相似可得BF长,也就求得了CF的长度,△CEF的面积=CF•CE.
【详解】
解:由折叠的性质知,第二个图中BD=AB-AD=4,第三个图中AB=AD-BD=2,
因为BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面积=CF•CE=8;
故选:C.
点睛:
本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,平行线的性质,三角形的面积公式等知识点.
4、D
【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.
【详解】
A. k=−2
相关试卷
这是一份江苏省南京江北新区七校联考2022-2023学年数学七年级第二学期期末联考模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2022年江苏省南京江北新区南京市浦口外国语校中考适应性考试数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,二次函数y=,在,,则的值为等内容,欢迎下载使用。
这是一份2022年江苏省南京市江北新区重点名校中考数学考试模拟冲刺卷含解析,共21页。