2022届江苏省苏州市相城第三实验中学中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.(2011•黑河)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a>0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是( )
A、2个 B、3个
C、4个 D、5个
2.下列各式中计算正确的是
A. B. C. D.
3.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
4.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
5.下列图案是轴对称图形的是( )
A. B. C. D.
6.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为( )
A.:1 B.2: C.2:1 D.29:14
7.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )
A.16+16 B.16+8 C.24+16 D.4+4
8.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
9.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
10.不等式组的解集在数轴上表示为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.
12.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.
13.的相反数是______,的倒数是______.
14.计算:=_____________.
15.如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 .
16.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.
17.分解因式:4a3b﹣ab=_____.
三、解答题(共7小题,满分69分)
18.(10分)解方程组
19.(5分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.
20.(8分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积
21.(10分)如图,矩形中,对角线,相交于点,且,.动点,分别从点,同时出发,运动速度均为lcm/s.点沿运动,到点停止.点沿运动,点到点停留4后继续运动,到点停止.连接,,,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为.
(1)求线段的长(用含的代数式表示);
(2)求时,求与之间的函数解析式,并写出的取值范围;
(3)当时,直接写出的取值范围.
22.(10分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.
23.(12分)如图,二次函数的图像与轴交于、两点,与轴交于点,.点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.求、的值;如图①,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
24.(14分)直线y1=kx+b与反比例函数的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)根据图象写出不等式kx+b﹣≤0的解集;
(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.
解答:解:①根据图示知,二次函数与x轴有两个交点,所以△=b2-4ac>0;故①正确;
②根据图示知,该函数图象的开口向上,
∴a>0;
故②正确;
③又对称轴x=-=1,
∴<0,
∴b<0;
故本选项错误;
④该函数图象交于y轴的负半轴,
∴c<0;
故本选项错误;
⑤根据抛物线的对称轴方程可知:(-1,0)关于对称轴的对称点是(3,0);
当x=-1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故⑤正确.
所以①②⑤三项正确.
故选B.
2、B
【解析】
根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断.
【详解】
A. ,故错误.
B. ,正确.
C. ,故错误.
D. , 故错误.
故选B.
【点睛】
考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.
3、C
【解析】
根据轴对称和中心对称的定义去判断即可得出正确答案.
【详解】
解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、不是轴对称图形,也不是中心对称图形,故此选项错误;
C、是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误.
故选:C.
【点睛】
本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.
4、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
5、C
【解析】
解:A.此图形不是轴对称图形,不合题意;
B.此图形不是轴对称图形,不合题意;
C.此图形是轴对称图形,符合题意;
D.此图形不是轴对称图形,不合题意.
故选C.
6、A
【解析】
试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.
故选A.
考点:反比例函数系数k的几何意义
7、A
【解析】
分析出此三棱柱的立体图像即可得出答案.
【详解】
由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=×4=,所以侧面积之和为×2+4×4= 16+16,所以答案选择A项.
【点睛】
本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.
8、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
9、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
10、A
【解析】
分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.
【详解】
解不等式①得,x>1;
解不等式②得,x>2;
∴不等式组的解集为:x≥2,
在数轴上表示为:
故选A.
【点睛】
本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、60°
【解析】
试题解析:∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故答案为60°.
12、75°
【解析】
【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.
【详解】∵|cosA-|+(sinB-)2=0,
∴cosA=,sinB=,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=75°,
故答案为:75°.
【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.
13、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
14、
【解析】
分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.
详解:
原式=.
故答案为:.
点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.
15、.
【解析】
试题分析:此题是求阴影部分的面积占正方形面积的几分之几,即为所求概率.阴影部分的面积为:3×1÷2×4=6,因为正方形对角线形成4个等腰直角三角形,所以边长是=,∴这个点取在阴影部分的概率为:6÷=6÷18=.
考点:求随机事件的概率.
16、1.
【解析】
试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.
考点:①平行四边形的性质;②圆内接四边形的性质.
17、ab(2a+1)(2a-1)
【解析】
先提取公因式再用公式法进行因式分解即可.
【详解】
4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)
【点睛】
此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.
三、解答题(共7小题,满分69分)
18、
【解析】
解:由①得③
把③代入②得
把代人③得
∴原方程组的解为
19、证明见解析.
【解析】
试题分析:由可得则可证明,因此可得
试题解析:即,在和中,
考点:三角形全等的判定.
20、(1),N(3,6);(2)y=-x+2,S△OMN=3.
【解析】
(1)求出点M坐标,利用待定系数法即可求得反比例函数的解析式,把N点的纵坐标代入解析式即可求得横坐标;
(2)根据M点的坐标与反比例函数的解析式,求得N点的坐标,利用待定系数法求得直线MN的解析式,根据△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
【详解】
解:(1)∵点M是AB边的中点,∴M(6,3).
∵反比例函数y=经过点M,∴3=.∴k=1.
∴反比例函数的解析式为y=.
当y=6时,x=3,∴N(3,6).
(2)由题意,知M(6,2),N(2,6).
设直线MN的解析式为y=ax+b,则
,
解得,
∴直线MN的解析式为y=-x+2.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-2=3.
【点睛】
本题考查了反比例函数的系数k的几何意义,待定系数法求一次函数的解析式和反比例函数的解析式,正方形的性质,求得M、N点的坐标是解题的关键.
21、(1)当0<x≤1时,PD=1-x,当1<x≤14时,PD=x-1.
(2)y=;(3)5≤x≤9
【解析】
(1)分点P在线段CD或在线段AD上两种情形分别求解即可.
(2)分三种情形:①当5≤x≤1时,如图1中,根据y=S△DPB,求解即可.②当1<x≤9时,如图2中,根据y=S△DPB,求解即可.③9<x≤14时,如图3中,根据y=S△APQ+S△ABQ-S△PAB计算即可.
(3)根据(2)中结论即可判断.
【详解】
解:(1)当0<x≤1时,PD=1-x,
当1<x≤14时,PD=x-1.
(2)①当5≤x≤1时,如图1中,
∵四边形ABCD是矩形,
∴OD=OB,
∴y=S△DPB=ו(1-x)•6=(1-x)=12-x.
②当1<x≤9时,如图2中,y=S△DPB=×(x-1)×1=2x-2.
③9<x≤14时,如图3中,y=S△APQ+S△ABQ-S△PAB=•(14-x)•(x-4)+×1×(tx-4)-×1×(14-x)=-x2+x-11.
综上所述,y=.
(3)由(2)可知:当5≤x≤9时,y=S△BDP.
【点睛】
本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
22、(1)见解析,(2)CF=cm.
【解析】
(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
【详解】
证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
∴∠CDB+∠DBC=90°.
∵CE⊥BD,∴∠DBC+∠ECB=90°.
∴∠ECB=∠CDB.
∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
∴∠CFB=∠BCF
∴BF=BC
(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
在Rt△BCD中,由勾股定理得BD=.
又∵BD•CE=BC•DC,
∴CE=.
∴BE=.
∴EF=BF﹣BE=3﹣.
∴CF=cm.
【点睛】
本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.
23、(1),;(2)点的坐标为;(3)点的坐标为和
【解析】
(1)根据二次函数的对称轴公式,抛物线上的点代入,即可;
(2)先求F的对称点,代入直线BE,即可;(3)构造新的二次函数,利用其性质求极值.
【详解】
解:(1)轴,,抛物线对称轴为直线
点的坐标为
解得或(舍去),
(2)设点的坐标为对称轴为直线点关于直线的对称点的坐标为.
直线经过点利用待定系数法可得直线的表达式为.
因为点在上,即点的坐标为
(3)存在点满足题意.设点坐标为,则
作垂足为
①点在直线的左侧时,点的坐标为点的坐标为点的坐标为在中,时,取最小值.此时点的坐标为
②点在直线的右侧时,点的坐标为同理,时,取最小值.此时点的坐标为
综上所述:满足题意得点的坐标为和
考点:二次函数的综合运用.
24、 (1) y=﹣x+6;(2) 0<x<2或x>4;(3) 点P的坐标为(2,0)或(﹣3,0).
【解析】
(1)将点坐标代入双曲线中即可求出,最后将点坐标代入直线解析式中即可得出结论;
(2)根据点坐标和图象即可得出结论;
(3)先求出点坐标,进而求出,设出点P坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.
【详解】
解:(1)∵点和点在反比例函数的图象上,
,
解得,
即
把两点代入中得 ,
解得:,
所以直线的解析式为:;
(2)由图象可得,当时,的解集为或.
(3)由(1)得直线的解析式为,
当时,y=6,
,
,
当时,,
∴点坐标为
.
设P点坐标为,由题可以,点在点左侧,则
由可得
①当时,,
,解得,
故点P坐标为
②当时,,
,解得,
即点P的坐标为
因此,点P的坐标为或时,与相似.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.
江苏省苏州市星湾中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省苏州市星湾中学2021-2022学年中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了tan45°的值等于等内容,欢迎下载使用。
江苏省苏州市相城第三实验中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份江苏省苏州市相城第三实验中学2021-2022学年中考数学模拟预测试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
江苏省苏州市名校2022年中考数学考试模拟冲刺卷含解析: 这是一份江苏省苏州市名校2022年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了的负倒数是等内容,欢迎下载使用。