2022届江苏无锡梁溪区四校联考初中数学毕业考试模拟冲刺卷含解析
展开
这是一份2022届江苏无锡梁溪区四校联考初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了下列图形是轴对称图形的有,中国古代在利用“计里画方”等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
A.2 B.3 C.4 D.5
2.下列计算正确的是( )
A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6
C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy
3.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )
A. B. C. D.
4.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1 D.
5.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2
6.下列图形是轴对称图形的有( )
A.2个 B.3个 C.4个 D.5个
7.在下列交通标志中,是中心对称图形的是( )
A. B.
C. D.
8.中国古代在利用“计里画方”(比例缩放和直角坐标网格体系)的方法制作地图时,会利用测杆、水准仪和照板来测量距离.在如图所示的测量距离AB的示意图中,记照板“内芯”的高度为EF,观测者的眼睛(图中用点C表示)与BF在同一水平线上,则下列结论中,正确的是( )
A. B. C. D.
9.一个多边形的每个内角都等于120°,则这个多边形的边数为( )
A.4 B.5 C.6 D.7
10.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )
A. B. C. D.
11.如图,在中,,,,点在以斜边为直径的半圆上,点是的三等分点,当点沿着半圆,从点运动到点时,点运动的路径长为( )
A.或 B.或 C.或 D.或
12.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )
A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.函数y=中自变量x的取值范围是________,若x=4,则函数值y=________.
14.已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为______.
15.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
16.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
17.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
18.已知关于x的方程x2+kx﹣3=0的一个根是x=﹣1,则另一根为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在矩形ABCD中,E是边BC上的点,AE=BC, DF⊥AE,垂足为F,连接DE.
求证:AB=DF.
20.(6分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
小何根据学习函数的经验,将此问题转化为函数问题解决.
小华假设AE的长度为xcm,线段DE的长度为ycm.
(当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4
5
6
7
8
y/cm
0
1.6
2.5
3.3
4.0
4.7
5.8
5.7
当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
(2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为 cm.
21.(6分)解方程:1+
22.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.
23.(8分)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:
销售单价x(元/kg)
120
130
…
180
每天销量y(kg)
100
95
…
70
设y与x的关系是我们所学过的某一种函数关系.
(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
24.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
25.(10分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
560
580
600
620
640
660
680
700
720
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.
26.(12分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.
(1)证明:DE是⊙O的切线;
(2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
(3)若⊙O的半径r=5,sinA=,求线段EF的长.
27.(12分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.
(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
∵∠GEF=90°,
∴∠GEA+∠FEB=90°,
∴∠AGE=∠FEB,∠AEG=∠EFB,
∴△AEG∽△BFE,
∴,
又∵AE=BE,
∴AE2=AG•BF=2,
∴AE=(舍负),
∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
∴GF的长为3,
故选B.
【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.
2、D
【解析】
A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.
【详解】
A.-2x-2y3×2x3y=-4xy4,故本选项错误;
B. (−2a2)3=−8a6,故本项错误;
C. (2a+1)(2a−1)=4a2−1,故本项错误;
D.35x3y2÷5x2y=7xy,故本选项正确.
故答案选D.
【点睛】
本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.
3、C
【解析】
试题分析:由题意可得,
第一小组对应的圆心角度数是:×360°=72°,
故选C.
考点:1.扇形统计图;2.条形统计图.
4、C
【解析】
作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
【详解】
试题分析:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,
∴BM=MH=,
∴AB=2+,
∴AC=AB=(2+)=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴,即,
∴ON=1.
故选C.
【点睛】
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
5、B
【解析】
分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.
【详解】
∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,
∴y1==6,y2==3,y3==-2,
∵﹣2<3<6,
∴y3<y2<y1,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.
6、C
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
图(3)有二条对称轴,是轴对称图形,符合题意;
图(3)有五条对称轴,是轴对称图形,符合题意;
图(3)有一条对称轴,是轴对称图形,符合题意.
故轴对称图形有4个.
故选C.
考点:轴对称图形.
7、C
【解析】
解:A图形不是中心对称图形;
B不是中心对称图形;
C是中心对称图形,也是轴对称图形;
D是轴对称图形;不是中心对称图形
故选C
8、B
【解析】
分析:由平行得出相似,由相似得出比例,即可作出判断.
详解: ∵EF∥AB, ∴△CEF∽△CAB, ∴,故选B.
点睛:本题考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解答本题的关键.
9、C
【解析】
试题解析:∵多边形的每一个内角都等于120°,
∴多边形的每一个外角都等于180°-120°=10°,
∴边数n=310°÷10°=1.
故选C.
考点:多边形内角与外角.
10、D
【解析】
根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.
【详解】
解:作AE⊥BC于E,
则四边形AECD为矩形,
∴EC=AD=1,AE=CD=3,
∴BE=4,
由勾股定理得,AB==5,
∴四边形ABCD的四条边之比为1:3:5:5,
D选项中,四条边之比为1:3:5:5,且对应角相等,
故选D.
【点睛】
本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.
11、A
【解析】
根据平行线的性质及圆周角定理的推论得出点M的轨迹是以EF为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论.
【详解】
当点D与B重合时,M与F重合,当点D与A重合时,M与E重合,连接BD,FM,AD,EM,
∵
∴
∵AB是直径
即
∴
∴点M的轨迹是以EF为直径的半圆,
∵
∴以EF为直径的圆的半径为1
∴点M运动的路径长为
当 时,同理可得点M运动的路径长为
故选:A.
【点睛】
本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键.
12、A
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2024江苏省无锡市梁溪区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2024江苏省无锡市梁溪区中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份江苏无锡梁溪区四校联考2023-2024学年数学八上期末复习检测试题含答案,共6页。试卷主要包含了已知,则的值是,下列运算正确的是等内容,欢迎下载使用。