2022届江苏省扬州市教院重点名校中考考前最后一卷数学试卷含解析
展开
这是一份2022届江苏省扬州市教院重点名校中考考前最后一卷数学试卷含解析,共16页。试卷主要包含了下列判断错误的是,若二次函数的图象经过点等内容,欢迎下载使用。
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列实数中是无理数的是( )
A.B.πC.D.
2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20B.15C.10D.5
3.若点A(a,b),B(,c)都在反比例函数y=的图象上,且﹣1<c<0,则一次函数y=(b﹣c)x+ac的大致图象是( )
A.B.
C.D.
4.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为( )
A.30°B.60°C.120°D.180°
5.下列判断错误的是( )
A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形
C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形
6.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A.,B.,C.,D.,
7.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为( )
A.1B.2C.3D.4
8.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:
①小明家距学校4千米;
②小明上学所用的时间为12分钟;
③小明上坡的速度是0.5千米/分钟;
④小明放学回家所用时间为15分钟.
其中正确的个数是( )
A.1个B.2个C.3个D.4个
9.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )
A.∠NOQ=42°B.∠NOP=132°
C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补
10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73B.81C.91D.109
二、填空题(共7小题,每小题3分,满分21分)
11.正八边形的中心角为______度.
12.已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=____cm.
13.计算2x3·x2的结果是_______.
14.如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,,,那么______.
15.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___
16.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
17.计算a3÷a2•a的结果等于_____.
三、解答题(共7小题,满分69分)
18.(10分)先化简,再求值:,其中满足.
19.(5分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
20.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.
21.(10分)如图,已知,.求证.
22.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°
①求∠OCE的度数;
②若⊙O的半径为2,求线段EF的长.
23.(12分)计算:.
24.(14分)某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:
根据上面的数据,将下表补充完整:
(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)
两组样本数据的平均数、中位数、众数如表所示:
结论:
(1)估计乙业务员能获得奖金的月份有______个;
(2)可以推断出_____业务员的销售业绩好,理由为_______.(至少从两个不同的角度说明推断的合理性)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、是分数,属于有理数;
B、π是无理数;
C、=3,是整数,属于有理数;
D、-是分数,属于有理数;
故选B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
2、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
3、D
【解析】
将,代入,得,,然后分析与的正负,即可得到的大致图象.
【详解】
将,代入,得,,
即,.
∴.
∵,∴,∴.
即与异号.
∴.
又∵,
故选D.
【点睛】
本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.
4、C
【解析】
求出正三角形的中心角即可得解
【详解】
正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
故选C.
【点睛】
本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键
5、C
【解析】
根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
【详解】
解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
B、四个内角都相等的四边形是矩形,故本选项正确;
C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
D、四条边都相等的四边形是菱形,故本选项正确.
故选C
【点睛】
此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
6、C
【解析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
故选C.
考点:抛物线与x轴的交点.
7、A
【解析】
试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
考点:线段垂直平分线的性质
8、C
【解析】
从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.
【详解】
解:①小明家距学校4千米,正确;
②小明上学所用的时间为12分钟,正确;
③小明上坡的速度是千米/分钟,错误;
④小明放学回家所用时间为3+2+10=15分钟,正确;
故选:C.
【点睛】
本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
9、C
【解析】
试题分析:如图所示:∠NOQ=138°,选项A错误;∠NOP=48°,选项B错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,选项C正确;由以上可得,∠MOQ与∠MOP不互补,选项D错误.故答案选C.
考点:角的度量.
10、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
二、填空题(共7小题,每小题3分,满分21分)
11、45°
【解析】
运用正n边形的中心角的计算公式计算即可.
【详解】
解:由正n边形的中心角的计算公式可得其中心角为,
故答案为45°.
【点睛】
本题考查了正n边形中心角的计算.
12、2-2
【解析】
根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.
【详解】
解:由于P为线段AB=4的黄金分割点,
且AP是较长线段;
则AP=4×=cm,
故答案为:(2-2)cm.
【点睛】
此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.
13、
【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x3·x2=2x3+2=2x5.
故答案为:2x5
14、
【解析】
由直线a∥b∥c,根据平行线分线段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的长.
【详解】
解:由直线a∥b∥c,根据平行线分线段成比例定理,
即可得,
又由AC=3,CE=5,DF=4
可得:
解得:BD=.
故答案为.
【点睛】
此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.
15、3
【解析】
试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
∴a>1.
-=-3,即b2=12a,
∵一元二次方程ax2+bx+m=1有实数根,
∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
∴m的最大值为3,
16、0.1
【解析】
根据频率的求法:频率=,即可求解.
【详解】
解:根据题意,38-45岁组内的教师有8名,
即频数为8,而总数为25;
故这个小组的频率是为=0.1;
故答案为0.1.
【点睛】
本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=.
17、a1
【解析】
根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.
【详解】
解:原式=a3﹣1+1=a1.
故答案为a1.
【点睛】
本题考查了同底数幂的乘除法,关键是掌握计算法则.
三、解答题(共7小题,满分69分)
18、,1.
【解析】
原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将变形为,整体代入计算即可.
【详解】
解:原式
∵,
∴,
∴原式
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
19、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
【详解】
(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
解得:a=,b=1,c=﹣
∴抛物线解析式:y=x2+x﹣
(2)存在.
∵y=x2+x﹣=(x+1)2﹣2
∴P点坐标为(﹣1,﹣2)
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
设E(a,2),
∴a2+a﹣=2
解得a1=﹣1﹣2,a2=﹣1+2
∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
(3)∵点A(﹣3,0),点B(1,0),
∴AB=4
若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
∴AB∥PF,AB=PF=4
∵点P坐标(﹣1,﹣2)
∴点F坐标为(3,﹣2),(﹣5,﹣2)
∴平行四边形的面积=4×2=1
若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
∴AB与PF互相平分
设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
∴ ,
∴x=﹣1,y=2
∴点F(﹣1,2)
∴平行四边形的面积=×4×4=1
综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
【点睛】
本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
20、见解析
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥DC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
∴△AEO≌△CFO(ASA),
∴OE=OF.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
21、见解析
【解析】
根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.
【详解】
证明:∵∠ABD=∠DCA,∠DBC=∠ACB
∴∠ABD+∠DBC=∠DCA+∠ACB
即∠ABC=∠DCB
在△ABC和△DCB中
∴△ABC≌△DCB(ASA)
∴AB=DC
【点睛】
本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.
22、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
【解析】
【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
【试题解析】
(1)∵直线与⊙O相切,∴OC⊥CD.
又∵AD⊥CD,∴AD//OC.
∴∠DAC=∠OCA.
又∵OC=OA,∴∠OAC=∠OCA.
∴∠DAC=∠OAC.
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
∵∠E=30°,∴∠OCE=45°.
②作OG⊥CE于点G,可得FG=CG
∵OC=,∠OCE=45°.∴CG=OG=2.
∴FG=2.
∵在Rt△OGE中,∠E=30°,∴GE=.
∴EF=GE-FG=-2.
【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
23、
【解析】
【分析】括号内先进行通分,进行分式的加减法运算,然后再与括号外的分式进行分式乘除法运算即可.
【详解】原式=
=
=.
【点睛】本题考查了分式的混合运算,熟练掌握有关分式的运算法则是解题的关键.
24、填表见解析;(1)6;(2)甲;甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【解析】
(1)月销售额在8.0万元及以上可以获得奖金,去销售额中找到乙大于8.0的个数即可解题,
(2)根据中位数和平均数即可解题.
【详解】
解:如图,
(1)估计乙业务员能获得奖金的月份有6个;
(2)可以推断出甲业务员的销售业绩好,理由为:甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
故答案为0,1,3,0,2,4;6;甲,甲的销售额的中位数较大,并且甲月销售额在9万元以上的月份多.
【点睛】
本题考查了统计的相关知识,众数,平均数的应用,属于简单题,将图表信息转换成有用信息是解题关键.
甲
7.2 4
乙
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
____
____
_____
______
_____
_______
人员
平均数(万元)
中位数(万元)
众数(万元)
甲
8.2
8.9
9.6
乙
8.2
8.4
9.7
销售额
数量
x
人员
4.0≤x≤4.9
5.0≤x≤5.9
6.0≤x≤6.9
7.0≤x≤7.9
8.0≤x≤8.9
9.0≤x≤10.0
甲
1
0
1
2
1
5
乙
0
1
3
0
2
4
相关试卷
这是一份2022年江苏省扬州市教院重点名校中考押题数学预测卷含解析,共24页。试卷主要包含了如图,如图,反比例函数等内容,欢迎下载使用。
这是一份2022年江苏省金坛市重点达标名校中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,函数的图象上有两点,,若,则等内容,欢迎下载使用。
这是一份2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。