2022届吕梁市重点中学中考联考数学试卷含解析
展开
这是一份2022届吕梁市重点中学中考联考数学试卷含解析,共26页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为( )
A.1 B.-1 C.2 D.-2
2.若等式(-5)□5=–1成立,则□内的运算符号为( )
A.+ B.– C.× D.÷
3.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
4.如图所示是放置在正方形网格中的一个 ,则的值为( )
A. B. C. D.
5.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:
①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )
A.2 B.3 C.4 D.5
6.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为( )
A.(0, 1) B.(1, -1) C.(0, -1) D.(1, 0)
7.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
8.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1 B. C.-1 D.+1
9.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是( )
A.线段DB绕点D顺时针旋转一定能与线段DC重合
B.线段DB绕点D顺时针旋转一定能与线段DI熏合
C.∠CAD绕点A顺时针旋转一定能与∠DAB重合
D.线段ID绕点I顺时针旋转一定能与线段IB重合
10.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知:=,则的值是______.
12. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
13.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.
14.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.
15.如图,菱形ABCD和菱形CEFG中,∠ABC=60°,点B,C,E在同一条直线上,点D在CG上,BC=1,CE=3,H是AF的中点,则CH的长为________.
16.在函数y=的表达式中,自变量x的取值范围是 .
三、解答题(共8题,共72分)
17.(8分)如图,在中,,为边上的中线,于点E.
求证:;若,,求线段的长.
18.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,动点P从点C出发,在BC边上以每秒cm的速度向点B匀速运动,同时动点Q也从点C出发,沿C→A→B以每秒4cm的速度匀速运动,运动时间为t秒,连接PQ,以PQ为直径作⊙O.
(1)当时,求△PCQ的面积;
(2)设⊙O的面积为s,求s与t的函数关系式;
(3)当点Q在AB上运动时,⊙O与Rt△ABC的一边相切,求t的值.
19.(8分)如图,在梯形中,,,,,点为边上一动点,作⊥,垂足在边上,以点为圆心,为半径画圆,交射线于点.
(1)当圆过点时,求圆的半径;
(2)分别联结和,当时,以点为圆心,为半径的圆与圆相交,试求圆的半径的取值范围;
(3)将劣弧沿直线翻折交于点,试通过计算说明线段和的比值为定值,并求出次定值.
20.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.
21.(8分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.
(1)求证:BH=EH;
(2)如图2,当点G落在线段BC上时,求点B经过的路径长.
22.(10分)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
23.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
24.雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?
指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.
通过这段对话,请你求出该地驻军原来每天清理道路的米数.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
故选A
2、D
【解析】
根据有理数的除法可以解答本题.
【详解】
解:∵(﹣5)÷5=﹣1,
∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
故选D.
【点睛】
考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
3、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
4、D
【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
【详解】
解:过点A向CB引垂线,与CB交于D,
△ABD是直角三角形,
∵BD=4,AD=2,
∴tan∠ABC=
故选:D.
【点睛】
此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
5、D
【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;
②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;
③因为∠BAC=90°,根据平行四边形的面积公式可作判断;
④根据三角形中位线定理可作判断;
⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.
【详解】
①∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,∠ABC=∠ADC=60°,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE=1,
∴△ABE是等边三角形,
∴AE=BE=1,
∵BC=2,
∴EC=1,
∴AE=EC,
∴∠EAC=∠ACE,
∵∠AEB=∠EAC+∠ACE=60°,
∴∠ACE=30°,
∵AD∥BC,
∴∠CAD=∠ACE=30°,
故①正确;
②∵BE=EC,OA=OC,
∴OE=AB=,OE∥AB,
∴∠EOC=∠BAC=60°+30°=90°,
Rt△EOC中,OC=,
∵四边形ABCD是平行四边形,
∴∠BCD=∠BAD=120°,
∴∠ACB=30°,
∴∠ACD=90°,
Rt△OCD中,OD=,
∴BD=2OD=,故②正确;
③由②知:∠BAC=90°,
∴S▱ABCD=AB•AC,
故③正确;
④由②知:OE是△ABC的中位线,
又AB=BC,BC=AD,
∴OE=AB=AD,故④正确;
⑤∵四边形ABCD是平行四边形,
∴OA=OC=,
∴S△AOE=S△EOC=OE•OC=××,
∵OE∥AB,
∴,
∴,
∴S△AOP= S△AOE==,故⑤正确;
本题正确的有:①②③④⑤,5个,
故选D.
【点睛】
本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.
6、B
【解析】
试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.
试题解析:由图形可知,
对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.
故旋转中心坐标是P(1,-1)
故选B.
考点:坐标与图形变化—旋转.
7、C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
8、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
9、D
【解析】
解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正确,不符合题意;
∴=,∴BD=CD,故A正确,不符合题意;
∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.
故选D.
点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.
10、D
【解析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.
【详解】
请在此输入详解!
二、填空题(本大题共6个小题,每小题3分,共18分)
11、–
【解析】
根据已知等式设a=2k,b=3k,代入式子可求出答案.
【详解】
解:由,可设a=2k,b=3k,(k≠0),
故:,
故答案:.
【点睛】
此题主要考查比例的性质,a、b都用k表示是解题的关键.
12、
【解析】
根据概率是所求情况数与总情况数之比,可得答案.
【详解】
因为共有六个小组,
所以第五组被抽到的概率是,
故答案为:.
【点睛】
本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
13、
【解析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.
【详解】
如图:
共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.
【点睛】
本题考查了树状图法的知识,解题的关键是列出树状图求出概率.
14、
【解析】
分析:
由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.
详解:
∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,
∴抽到有理数的概率是:.
故答案为.
点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.
15、
【解析】
连接AC、CF,GE,根据菱形性质求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
【详解】
解:如图,连接AC、CF、GE,CF和GE相交于O点
∵在菱形ABCD中, ,BC=1,
∴,AC=1,
∴
∵在菱形CEFG中,是它的对角线,
∴,
∴,
∴
∵==,
∴在,
又∵H是AF的中点
∴.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
16、x≥1.
【解析】
根据被开方数大于等于0列式计算即可得解.
【详解】
根据题意得,x﹣1≥0,
解得x≥1.
故答案为x≥1.
【点睛】
本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.
三、解答题(共8题,共72分)
17、(1)见解析;(2).
【解析】
对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
【详解】
解:(1)证明:∵,
∴.
又∵为边上的中线,
∴.
∵,
∴,
∴.
(2)∵,∴.
在中,根据勾股定理,得.
由(1)得,∴,
即,
∴.
【点睛】
此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
18、(1);(2)①;②;(3)t的值为或1或.
【解析】
(1)先根据t的值计算CQ和CP的长,由图形可知△PCQ是直角三角形,根据三角形面积公式可得结论;
(2)分两种情况:①当Q在边AC上运动时,②当Q在边AB上运动时;分别根据勾股定理计算PQ2,最后利用圆的面积公式可得S与t的关系式;
(3)分别当⊙O与BC相切时、当⊙O与AB相切时,当⊙O与AC相切时三种情况分类讨论即可确定答案.
【详解】
(1)当t=时,CQ=4t=4×=2,即此时Q与A重合,
CP=t=,
∵∠ACB=90°,
∴S△PCQ=CQ•PC=×2×=;
(2)分两种情况:
①当Q在边AC上运动时,0<t≤2,如图1,
由题意得:CQ=4t,CP=t,
由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,
∴S=π=;
②当Q在边AB上运动时,2<t<4如图2,
设⊙O与AB的另一个交点为D,连接PD,
∵CP=t,AC+AQ=4t,
∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,
∵PQ为⊙O的直径,
∴∠PDQ=90°,
Rt△ACB中,AC=2cm,AB=4cm,
∴∠B=30°,
Rt△PDB中,PD=PB=,
∴BD=,
∴QD=BQ﹣BD=6﹣4t﹣=3﹣,
∴PQ==,
∴S=π==;
(3)分三种情况:
①当⊙O与AC相切时,如图3,设切点为E,连接OE,过Q作QF⊥AC于F,
∴OE⊥AC,
∵AQ=4t﹣2,
Rt△AFQ中,∠AQF=30°,
∴AF=2t﹣1,
∴FQ=(2t﹣1),
∵FQ∥OE∥PC,OQ=OP,
∴EF=CE,
∴FQ+PC=2OE=PQ,
∴(2t﹣1)+t=,
解得:t=或﹣(舍);
②当⊙O与BC相切时,如图4,
此时PQ⊥BC,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=1;
③当⊙O与BA相切时,如图5,
此时PQ⊥BA,
∵BQ=6﹣4t,PB=2﹣t,
∴cos30°=,
∴,
∴t=,
综上所述,t的值为或1或.
【点睛】
本题是圆的综合题,涉及了三角函数、勾股定理、圆的面积、切线的性质等知识,综合性较强,有一定的难度,以点P和Q运动为主线,画出对应的图形是关键,注意数形结合的思想.
19、(1)x=1 (2) (1)
【解析】
(1)作AM⊥BC、连接AP,由等腰梯形性质知BM=4、AM=1,据此知tanB=tanC= ,从而可设PH=1k,则CH=4k、PC=5k,再表示出PA的长,根据PA=PH建立关于k的方程,解之可得;
(2)由PH=PE=1k、CH=4k、PC=5k及BC=9知BE=9−8k,由△ABE∽△CEH得 ,据此求得k的值,从而得出圆P的半径,再根据两圆间的位置关系求解可得;
(1)在圆P上取点F关于EH的对称点G,连接EG,作PQ⊥EG、HN⊥BC,先证△EPQ≌△PHN得EQ=PN,由PH=1k、HC=4k、PC=5k知sinC= 、cosC= ,据此得出NC= k、HN=k及PN=PC−NC=k,继而表示出EF、EH的长,从而出答案.
【详解】
(1)作AM⊥BC于点M,连接AP,如图1,
∵梯形ABCD中,AD//BC,且AB=DC=5、AD=1、BC=9,
∴BM=4、AM=1,
∴tanB=tanC=,
∵PH⊥DC,
∴设PH=1k,则CH=4k、PC=5k,
∵BC=9,
∴PM=BC−BM−PC=5−5k,
∴AP=AM+PM=9+(5−5k) ,
∵PA=PH,
∴9+(5−5k) =9k,
解得:k=1或k=,
当k= 时,CP=5k= >9,舍去;
∴k=1,
则圆P的半径为1.
(2)如图2,
由(1)知,PH=PE=1k、CH=4k、PC=5k,
∵BC=9,
∴BE=BC−PE−PC=9−8k,
∵△ABE∽△CEH,
∴ ,即 ,
解得:k= ,
则PH= ,即圆P的半径为,
∵圆B与圆P相交,且BE=9−8k= ,
∴
相关试卷
这是一份2022年武汉市重点中学中考联考数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列运算中,正确的是等内容,欢迎下载使用。
这是一份2022年随州市重点中学中考联考数学试卷含解析,共29页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。
这是一份2022年廊坊市重点中学中考联考数学试卷含解析,共17页。试卷主要包含了规定,已知点P等内容,欢迎下载使用。