年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析

    2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析第1页
    2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析第2页
    2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析

    展开

    这是一份2022届南京鼓楼区宁海中学中考试题猜想数学试卷含解析,共23页。试卷主要包含了若,则的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是(  )
    A.﹣5 B.﹣3 C.3 D.1
    2.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为(  )kg.
    A.180 B.200 C.240 D.300
    3.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )

    A. B.
    C. D.
    4.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是(  )

    A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
    C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
    5.青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米.将 2500000 用科学记数法表示应为( )
    A. B. C. D.
    6.若,则的值为( )
    A.﹣6 B.6 C.18 D.30
    7.下列条件中不能判定三角形全等的是( )
    A.两角和其中一角的对边对应相等 B.三条边对应相等
    C.两边和它们的夹角对应相等 D.三个角对应相等
    8.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为(  )
    A. B. C. D.
    9.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是(  )
    每周做家务的时间(小时)
    0
    1
    2
    3
    4
    人数(人)
    2
    2
    3
    1
    1
    A.3,2.5 B.1,2 C.3,3 D.2,2
    10.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为(  )
    A.3 B. C. D.
    11.方程的解为(  )
    A.x=﹣1 B.x=1 C.x=2 D.x=3
    12.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一组数据1,2,3,的平均数是2,则的值为______.
    14.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).

    15.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
    16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为________.

    17.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
    18.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.

    对雾霾了解程度的统计表
    对雾霾的了解程度
    百分比
    A.非常了解
    5%
    B.比较了解
    m
    C.基本了解
    45%
    D.不了解
    n
    请结合统计图表,回答下列问题:统计表中:m=   ,n=   ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
    20.(6分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
    (1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
    (2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
    21.(6分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
    拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.

    22.(8分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
    (1)求证:四边形ABCD是菱形.
    (2)若AC=8,AB=5,求ED的长.

    23.(8分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
    (1)求k的值;
    (1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.

    24.(10分)如图,抛物线经过点A(﹣2,0),点B(0,4).
    (1)求这条抛物线的表达式;
    (2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
    (3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.

    25.(10分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W内(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元).
    (1)若只在国内销售,当x=1000(件)时,y= (元/件);
    (2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);
    (3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.
    26.(12分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.
    (1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;
    (2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.
    27.(12分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
    初一:76 88 93 65 78 94 89 68 95 50
    89 88 89 89 77 94 87 88 92 91
    初二:74 97 96 89 98 74 69 76 72 78
    99 72 97 76 99 74 99 73 98 74
    (1)根据上面的数据,将下列表格补充完整;
    整理、描述数据:
    成绩x
    人数
    班级





    初一
    1
    2
    3

    6
    初二
    0
    1
    10
    1
    8
    (说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)
    分析数据:
    年级
    平均数
    中位数
    众数
    初一
    84
    88.5

    初二
    84.2

    74
    (2)得出结论:
    你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.
    【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,
    ∴1+m=3、1﹣n=2,
    解得:m=2、n=﹣1,
    所以m+n=2﹣1=1,
    故选D.
    【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.
    2、B
    【解析】
    根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
    【详解】
    解:设小李所进甜瓜的数量为,根据题意得:

    解得:,
    经检验是原方程的解.
    答:小李所进甜瓜的数量为200kg.
    故选:B.
    【点睛】
    本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
    3、A
    【解析】
    由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.
    【详解】
    解:大正方形的面积-小正方形的面积=,
    矩形的面积=,
    故,
    故选:A.
    【点睛】
    本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.
    4、A
    【解析】
    作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
    【详解】
    解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
    ∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
    ∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
    同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
    故选A.

    【点睛】
    本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
    5、C
    【解析】
    分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.
    解答:解:根据题意:2500000=2.5×1.
    故选C.
    6、B
    【解析】
    试题分析:∵,即,∴原式==
    ===﹣12+18=1.故选B.
    考点:整式的混合运算—化简求值;整体思想;条件求值.
    7、D
    【解析】
    解:A、符合AAS,能判定三角形全等;
    B、符合SSS,能判定三角形全等;;
    C、符合SAS,能判定三角形全等;
    D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
    故选D.
    8、C
    【解析】
    先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
    【详解】
    如图,根据勾股定理得,BC==12,
    ∴sinA=.
    故选C.

    【点睛】
    本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
    9、D
    【解析】
    试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.
    所以本题这组数据的中位数是1,众数是1.
    故选D.
    考点:1.众数;1.中位数.
    10、A
    【解析】
    【分析】根据锐角三角函数的定义求出即可.
    【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,
    ∴∠A的正切值为=3,
    故选A.
    【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.
    11、B
    【解析】
    观察可得最简公分母是(x-3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
    【详解】
    方程的两边同乘(x−3)(x+1),得
    (x−2) (x+1)=x(x−3),

    解得x=1.
    检验:把x=1代入(x−3)(x+1)=-4≠0.
    ∴原方程的解为:x=1.
    故选B.
    【点睛】
    本题考查的知识点是解分式方程,解题关键是注意解得的解要进行检验.
    12、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    根据这组数据的平均数是1和平均数的计算公式列式计算即可.
    【详解】
    ∵数据1,1,3,的平均数是1,
    ∴,
    解得:.
    故答案为:1.
    【点睛】
    本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
    14、②③.
    【解析】
    试题解析:①∵∠ADE=∠B,∠DAE=∠BAD,
    ∴△ADE∽△ABD;
    故①错误;
    ②作AG⊥BC于G,

    ∵∠ADE=∠B=α,tan∠α=,
    ∴,
    ∴,
    ∴cosα=,
    ∵AB=AC=15,
    ∴BG=1,
    ∴BC=24,
    ∵CD=9,
    ∴BD=15,
    ∴AC=BD.
    ∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
    ∴∠EDB=∠DAC,
    在△ACD与△DBE中,

    ∴△ACD≌△BDE(ASA).
    故②正确;
    ③当∠BED=90°时,由①可知:△ADE∽△ABD,
    ∴∠ADB=∠AED,
    ∵∠BED=90°,
    ∴∠ADB=90°,
    即AD⊥BC,
    ∵AB=AC,
    ∴BD=CD,
    ∴∠ADE=∠B=α且tan∠α=,AB=15,

    ∴BD=1.
    当∠BDE=90°时,易证△BDE∽△CAD,
    ∵∠BDE=90°,
    ∴∠CAD=90°,
    ∵∠C=α且cosα=,AC=15,
    ∴cosC=,
    ∴CD=.
    ∵BC=24,
    ∴BD=24-=
    即当△DCE为直角三角形时,BD=1或.
    故③正确;
    ④易证得△BDE∽△CAD,由②可知BC=24,
    设CD=y,BE=x,
    ∴,
    ∴,
    整理得:y2-24y+144=144-15x,
    即(y-1)2=144-15x,
    ∴0<x≤,
    ∴0<BE≤.
    故④错误.
    故正确的结论为:②③.
    考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.
    15、3
    【解析】
    由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.
    【详解】
    ∵一元二次方程ax2+bx+c=0有实数根,
    ∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,
    ∴-c≥-3,即c≤3,
    ∴c的最大值为3.
    故答案为:3.
    【点睛】
    本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.
    16、-6
    【解析】
    因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,),则点A的坐标为(-x,),点B的坐标为(0,),因此AC=-2x,OB=,根据菱形的面积等于对角线乘积的一半得:
    ,解得
    17、5.2
    【解析】
    分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
    详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
    ∴方差为:.
    点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
    18、120°
    【解析】
    设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.
    【详解】
    设扇形的半径为r,圆心角为n°.
    由题意:,
    ∴r=4,

    ∴n=120,
    故答案为120°
    【点睛】
    本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)20;15%;35%;(2)见解析;(3)126°.
    【解析】
    (1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
    (2)求出D的学生人数,然后补全统计图即可;
    (3)用D的百分比乘360°计算即可得解.
    【详解】
    解:(1)非常了解的人数为20,
    60÷400×100%=15%,
    1﹣5%﹣15%﹣45%=35%,
    故答案为20;15%;35%;
    (2)∵D等级的人数为:400×35%=140,
    ∴补全条形统计图如图所示:

    (3)D部分扇形所对应的圆心角:360°×35%=126°.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
    20、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【解析】
    试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
    (2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
    试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
    根据题意,2000x+2500(30-x)=68000,
    解得x=14,
    ∴30-x=16,
    答:种植A种生姜14亩,种植B种生姜16亩;
    (2)由题意得,x≥(30-x),解得x≥10,
    设全部收购该基地生姜的年总收入为y元,则
    y=8×2000x+7×2500(30-x)=-1500x+525000,
    ∵y随x的增大而减小,∴当x=10时,y有最大值,
    此时,30-x=20,y的最大值为510000元,
    答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
    【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
    21、(1)证明见解析;(2);拓展:
    【解析】
    (1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
    (2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
    拓展:对△ABD的外心位置进行推理,即可得出结论.
    【详解】
    (1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
    ∴BD=CE,
    ∴BC-BD=BC-CE,即BE=CD,
    ∵∠B=∠C=40°,
    ∴AB=AC,
    在△ABE和△ACD中,

    ∴△ABE≌△ACD(SAS);
    (2)解:∵∠B=∠C=40°,AB=BE,
    ∴∠BEA=∠EAB=(180°-40°)=70°,
    ∵BE=CD,AB=AC,
    ∴AC=CD,
    ∴∠ADC=∠DAC=(180°-40°)=70°,
    ∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
    拓展:
    解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
    ∴∠BAD=140°-∠BDA<90°.
    ∴∠BDA>50°,
    又∵∠BDA<90°,
    ∴50°<∠BDA<90°.
    【点睛】
    本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
    22、(1)证明见解析(2)4-3
    【解析】
    试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
    试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
    ∵△EAC是等边三角形, EO是AC边上中线,
    ∴EO⊥AC,即BD⊥AC,
    ∴平行四边形ABCD是是菱形.
    (2) ∵平行四边形ABCD是是菱形,
    ∴AO=CO==4,DO=BO,
    ∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
    在Rt△ABO中,由勾股定理可得:BO=3,
    ∴DO=BO=3,
    在Rt△EAO中,由勾股定理可得:EO=4
    ∴ED=EO-DO=4-3.
    23、(1)k=11;(1)C(2,0).
    【解析】
    试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
    (1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
    试题解析:
    (1)∵点A在直线y=2x上,其横坐标为1.
    ∴y=2×1=6,∴A(1,6),
    把点A(1,6)代入,得,
    解得:k=11;
    (1)由(1)得:,
    ∵点B为此反比例函数图象上一点,其纵坐标为2,
    ∴,解得x= 4,∴B(4,2),
    ∵CB∥OA,
    ∴设直线BC的解析式为y=2x+b,
    把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
    ∴直线BC的解析式为y=2x﹣9,
    当y=0时,2x﹣9=0,解得:x=2,
    ∴C(2,0).
    24、(1);(2)P(1,); (3)3或5.
    【解析】
    (1)将点A、B代入抛物线,用待定系数法求出解析式.
    (2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
    (3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
    【详解】
    解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
    ∴,解得,
    ∴抛物线解析式为,
    (2),
    ∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
    ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
    ∴,
    ∴,
    ∴,

    ∴P(1,),
    (3)设新抛物线的表达式为
    则,,DE=2
    过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF

    ∴,
    ∴FH=1.
    点D在y轴的正半轴上,则,
    ∴,
    ∴,
    ∴m=3,
    点D在y轴的负半轴上,则,
    ∴,
    ∴,
    ∴m=5,
    ∴综上所述m的值为3或5.
    【点睛】
    本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
    25、(1)140;(2)W内=-x2+130x,W外=-x2+ (150-a)x;(3)a=1.
    【解析】
    试题分析:(1)将x=1000代入函数关系式求得y,;
    (2)根据等量关系“利润=销售额﹣成本”“利润=销售额﹣成本﹣附加费”列出函数关系式;
    (3)对w内函数的函数关系式求得最大值,再求出w外的最大值并令二者相等求得a值.
    试题解析:(1)x=1000,y=-×1000+150=140;
    (2)W内=(y-1)x=(-x+150-1)x=-x2+130x.
    W外=(150-a)x-x2=-x2+(150-a)x;
    (3)W内=-x2+130x=-(x-6500)2+2,
    由W外=-x2+(150-a)x得:W外最大值为:(750-5a)2,
    所以:(750-5a)2=2.
    解得a=280或a=1.
    经检验,a=280不合题意,舍去,
    ∴a=1.
    考点:二次函数的应用.
    26、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.
    【解析】
    (1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;
    (2)利用(1)中所求,分别得出两种服装获利即可得出答案.
    【详解】
    解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:

    解得:,
    答:该车间应安排4天加工童装,6天加工成人装;
    (2)∵45×4=180,30×6=180,
    ∴180×80+180×120=180×(80+120)=36000(元),
    答:该车间加工完这批服装后,共可获利36000元.
    【点睛】
    本题考查二元一次方程组的应用.
    27、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.
    【解析】
    (1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;
    (2)根据平均数、众数、中位数的统计意义回答.
    【详解】
    (1)补全表格如下:
    整理、描述数据:
    初一成绩x满足10≤x≤19的有:11 19 19 11 19 19 17 11,共1个.
    故答案为:1.

    分析数据:
    在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;
    把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.
    故答案为:19,2.

    (2)初一年级掌握生态环保知识水平较好.
    因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.
    【点睛】
    本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.

    相关试卷

    南京鼓楼区宁海中学2023-2024学年八上数学期末统考试题含答案:

    这是一份南京鼓楼区宁海中学2023-2024学年八上数学期末统考试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,如果分式的值为0,那么x的值是,平面直角坐标系中,点P,下列计算结果,正确的是等内容,欢迎下载使用。

    2022届南京鼓楼区宁海中学中考押题数学预测卷含解析:

    这是一份2022届南京鼓楼区宁海中学中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022学年江苏省南京师范大附属中学中考试题猜想数学试卷含解析:

    这是一份2021-2022学年江苏省南京师范大附属中学中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的个数有等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map