2022届南京市鼓楼区中考数学全真模拟试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是( )
A.10° B.20° C.50° D.70°
2.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y3<y2<y1 C.y2<y1<y3 D.y3<y1<y2
3.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是( )
A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
4.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是( )
A.5 B. C. D.
5.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
A. B.
C. D.
6.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )
A.②③④ B.①②③ C.①④ D.①②④
7.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是( )
A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+2
8.下列计算正确的是( )
A.(a2)3=a6 B.a2•a3=a6 C.a3+a4=a7 D.(ab)3=ab3
9.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
10.下列图标中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB得到线段A′B′的过程______
12.如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留π)为______________.
13.PA、PB分别切⊙O于点A、B,∠PAB=60°,点C在⊙O上,则∠ACB的度数为_____.
14.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
15.函数y=的自变量x的取值范围是_____.
16.Rt△ABC中,AD为斜边BC上的高,若, 则 .
三、解答题(共8题,共72分)
17.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
18.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
19.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.
20.(8分)我们来定义一种新运算:对于任意实数 x、y,“※”为 a※b=(a+1)(b+1)﹣1.
(1)计算(﹣3)※9
(2)嘉琪研究运算“※”之后认为它满足交换律,你认为她的判断 ( 正确、错误)
(3)请你帮助嘉琪完成她对运算“※”是否满足结合律的证明.
21.(8分)计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
22.(10分)如图1,将长为10的线段OA绕点O旋转90°得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ.
(1)当∠POQ= 时,PQ有最大值,最大值为 ;
(2)如图2,若P是OB中点,且QP⊥OB于点P,求的长;
(3)如图3,将扇形AOB沿折痕AP折叠,使点B的对应点B′恰好落在OA的延长线上,求阴影部分面积.
23.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
24.如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.
求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.
【详解】
解:∵要使木条a与b平行,
∴∠1=∠2,
∴当∠1需变为50 º,
∴木条a至少旋转:70º-50º=20º.
故选B.
【点睛】
本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.
2、B
【解析】
分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.
【详解】
∵点A(1,y1),B(2,y2),C(﹣3,y3)都在反比例函数y=的图象上,
∴y1==6,y2==3,y3==-2,
∵﹣2<3<6,
∴y3<y2<y1,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.
3、D
【解析】
根据平行线的性质以及角平分线的定义,即可得到正确的结论.
【详解】
解:
,故A选项正确;
又
故B选项正确;
平分
,
,故C选项正确;
,故选项错误;
故选.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
4、C
【解析】
先利用勾股定理求出AC的长,然后证明△AEO∽△ACD,根据相似三角形对应边成比例列式求解即可.
【详解】
∵AB=6,BC=8,
∴AC=10(勾股定理);
∴AO=AC=5,
∵EO⊥AC,
∴∠AOE=∠ADC=90°,
∵∠EAO=∠CAD,
∴△AEO∽△ACD,
∴,
即 ,
解得,AE=,
∴DE=8﹣=,
故选:C.
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.
5、C
【解析】
根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
故选C.
点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
6、D
【解析】
根据图象得出a<0, a+b=0,c>0,即可判断①②;把x=2代入抛物线的解析式即可判断③,根据(-2,y1),(,y2)到对称轴的距离即可判断④.
【详解】
∵二次函数的图象的开口向下,
∴a<0,
∵二次函数的图象y轴的交点在y轴的正半轴上,
∴c>0,
∵二次函数图象的对称轴是直线x=,
∴a=-b,
∴b>0,
∴abc<0,故①正确;
∵a=-b, ∴a+b=0,故②正确;
把x=2代入抛物线的解析式得,
4a+2b+c=0,故③错误;
∵ ,
故④正确;
故选D..
【点睛】
本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.
7、D
【解析】
抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.
【详解】
当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示.
∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);
当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:,解得:.
则这条直线解析式为y=﹣x+1.
故选D.
【点睛】
本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.
8、A
【解析】
分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.
详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A.
点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.
9、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
10、D
【解析】
试题分析:根据轴对称图形和中心对称图形的概念,可知:
A既不是轴对称图形,也不是中心对称图形,故不正确;
B不是轴对称图形,但是中心对称图形,故不正确;
C是轴对称图形,但不是中心对称图形,故不正确;
D即是轴对称图形,也是中心对称图形,故正确.
故选D.
考点:轴对称图形和中心对称图形识别
二、填空题(本大题共6个小题,每小题3分,共18分)
11、将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度
【解析】
根据图形的旋转和平移性质即可解题.
【详解】
解:将线段AB绕点B逆时针旋转90°,在向右平移2个单位长度即可得到A′B′、
【点睛】
本题考查了旋转和平移,属于简单题,熟悉旋转和平移的概念是解题关键.
12、250
【解析】
从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可得圆柱的半径和高,易求体积.
【详解】
该立体图形为圆柱,
∵圆柱的底面半径r=5,高h=10,
∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).
答:立体图形的体积为250π立方单位.
故答案为250π.
【点睛】
考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.
13、60°或120°.
【解析】
连接OA、OB,根据切线的性质得出∠OAP的度数,∠OBP的度数;再根据四边形的内角和是360°,求出∠AOB的度数,有圆周角定理或圆内接四边形的性质,求出∠ACB的度数即可.
【详解】
解:连接OA、OB.
∵PA,PB分别切⊙O于点A,B,
∴OA⊥PA,OB⊥PB;
∴∠PAO=∠PBO=90°;
又∵∠APB=60°,
∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣60°=120°,
∴
即当C在D处时,∠ACB=60°.
在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣60°=120°.
于是∠ACB的度数为60°或120°,
故答案为60°或120°.
【点睛】
本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题.
14、y3<y1<y1
【解析】
根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
【详解】
解:k=-1<0,
∴在每个象限,y随x的增大而增大,
∵-3<-1<0,
∴0<y1<y1.
又∵1>0
∴y3<0
∴y3<y1<y1
故答案为:y3<y1<y1
【点睛】
本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
15、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
16、
【解析】
利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.
【详解】
如图,
∵∠CAB=90°,且AD⊥BC,
∴∠ADB=90°,
∴∠CAB=∠ADB,且∠B=∠B,
∴△CAB∽△ADB,
∴(AB:BC)1=△ADB:△CAB,
又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,
∴AB:BC=1:1.
三、解答题(共8题,共72分)
17、:(1) 30º;(2).
【解析】
分析:
(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;
(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.
详解:
(1) ∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,
∴∠CBA=∠A=60º,
∵BD平分∠ABC,
∴∠CDB=∠ABD=∠CBA=30º,
(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.
∴BD=AD A=2tan60º=2.
过点D作DH⊥AB,垂足为H,
∴AH=ADA=2sin60º=.
∵∠CDB=∠CBD=∠CBD=30º,
∴DC=BC=AD=2
∵AB=2AD=4
∴.
点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.
18、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
【解析】
解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:
,解得:。
答:每台电脑0.5万元,每台电子白板1.5万元。
(2)设需购进电脑a台,则购进电子白板(30-a)台,
则,解得:,即a=15,16,17。
故共有三种方案:
方案一:购进电脑15台,电子白板15台.总费用为万元;
方案二:购进电脑16台,电子白板14台.总费用为万元;
方案三:购进电脑17台,电子白板13台.总费用为万元。
∴方案三费用最低。
(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。
(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。
19、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.
【解析】
(1)根据图1找出8、9、10℃的天数,然后补全统计图即可;
(2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;
(3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.
【详解】
(1)由图1可知,8℃有2天,9℃有0天,10℃有2天,
补全统计图如图;
(2)根据条形统计图,7℃出现的频率最高,为3天,
所以,众数是7;
按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,
所以,中位数为(7+8)=7.5;
平均数为(6×2+7×3+8×2+10×2+11)=×80=8,
所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
=(8+3+0+8+9),
=×28,
=2.8;
(3)6℃的度数,×360°=72°,
7℃的度数,×360°=108°,
8℃的度数,×360°=72°,
10℃的度数,×360°=72°,
11℃的度数,×360°=36°,
作出扇形统计图如图所示.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
20、(1)-21;(2)正确;(3)运算“※”满足结合律
【解析】
(1)根据新定义运算法则即可求出答案.
(2)只需根据整式的运算证明法则a※b=b※a即可判断.
(3)只需根据整式的运算法则证明(a※b)※c=a※(b※c)即可判断.
【详解】
(1)(-3)※9=(-3+1)(9+1)-1=-21
(2)a※b=(a+1)(b+1)-1
b※a=(b+1)(a+1)-1,
∴a※b=b※a,
故满足交换律,故她判断正确;
(3)由已知把原式化简得a※b=(a+1)(b+1)-1=ab+a+b
∵(a※b)※c=(ab+a+b)※c
=(ab+a+b+1)(c+1)-1
=abc+ac+ab+bc+a+b+c
∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c
∴(a※b)※c=a※(b※c)
∴运算“※”满足结合律
【点睛】
本题考查新定义运算,解题的关键是正确理解新定义运算的法则,本题属于中等题型.
21、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
22、(1);(2);(3)
【解析】
(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;
(2)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;
(3)先在Rt△B'OP中,OP2+ = ,解得OP= ,最后用面积的和差即可得出结论.
【详解】
解:(1)∵P是半径OB上一动点,Q是 上的一动点,
∴当PQ取最大时,点Q与点A重合,点P与点B重合,
此时,∠POQ=90°,PQ= ,
故答案为:90°,10 ;
(2)解:如图,连接OQ,
∵点P是OB的中点,
∴OP=OB= OQ.
∵QP⊥OB,
∴∠OPQ=90°
在Rt△OPQ中,cos∠QOP= ,
∴∠QOP=60°,
∴lBQ ;
(3)由折叠的性质可得, ,
在Rt△B'OP中,OP2+ =,
解得OP=,
S阴影=S扇形AOB﹣2S△AOP=.
【点睛】
此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键.
23、△A′DE是等腰三角形;证明过程见解析.
【解析】
试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
∴CD=DA=DB,
∴∠DAC=∠DCA,
∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA,
∴∠DA′E=∠DEA′,
∴DA′=DE,
∴△A′DE是等腰三角形.
∵四边形DEFD′是菱形,
∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,
,
∴△A′DE≌△EFC′.
考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
24、(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)
【解析】
(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.
(2)据题意画出图形即可得出答案.
(3)据题意画出图形即可得出答案.
【详解】
(1)如图
∵AC=8cm,CB=6cm,
∴AB=AC+CB=8+6=14cm,
又∵点M、N分别是AC、BC的中点,
∴MC=AC,CN=BC,
∴MN=AC+BC=( AC+BC)=AB=7cm.
答:MN的长为7cm.
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=cm,
理由是:∵点M、N分别是AC、BC的中点,
∴MC=AC,CN=BC,
∵AC+CB=acm,
∴MN=AC+BC=(AC+BC)=cm.
(3)解:如图,
∵点M、N分别是AC、BC的中点,
∴MC=AC,CN=BC,
∵AC-CB=bcm,
∴MN=AC-BC=(AC-BC)=cm.
考点:两点间的距离.
南京市鼓楼区2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份南京市鼓楼区2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的有个,不等式3x<2,下列命题正确的是等内容,欢迎下载使用。
2022年江苏省南京市建邺区中考数学全真模拟试题含解析: 这是一份2022年江苏省南京市建邺区中考数学全真模拟试题含解析,共20页。试卷主要包含了答题时请按要求用笔,若与 互为相反数,则x的值是,1﹣的相反数是,下列运算结果正确的是等内容,欢迎下载使用。
2022年江苏省南京市南师附中江宁分校中考数学全真模拟试卷含解析: 这是一份2022年江苏省南京市南师附中江宁分校中考数学全真模拟试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列等式正确的是,下列运算正确的是等内容,欢迎下载使用。