2022届内蒙古阿拉善盟右旗重点达标名校中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若代数式在实数范围内有意义,则x的取值范围是( )
A. B. C. D.
2.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )
A.0.72×106平方米 B.7.2×106平方米
C.72×104平方米 D.7.2×105平方米
3.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是( )
A.1 B.2 C.3 D.4
4.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为( )
A.64×105 B.6.4×105 C.6.4×106 D.6.4×107
5.某校九年级(1)班全体学生实验考试的成绩统计如下表:
成绩(分)
24
25
26
27
28
29
30
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班考试成绩的众数是28分
C.该班考试成绩的中位数是28分
D.该班考试成绩的平均数是28分
6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )
A.π B. C. D.
7.下列四个式子中,正确的是( )
A. =±9 B.﹣ =6 C.()2=5 D.=4
8.有一个数用科学记数法表示为5.2×105,则这个数是( )
A.520000 B. C.52000 D.5200000
9.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
A.20% B.11% C.10% D.9.5%
10.下列函数中,二次函数是( )
A.y=﹣4x+5 B.y=x(2x﹣3)
C.y=(x+4)2﹣x2 D.y=
二、填空题(共7小题,每小题3分,满分21分)
11.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
12.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.
13.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.
14.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为_____.
15.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt△ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG,则由这五个等腰直角三角
形所构成的图形的面积为__________.
16.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.
17.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
19.(5分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD的延长线于点F.连接AE并延长交BF于点C.
(1)求证:AB=BC;
(2)如果AB=5,tan∠FAC=,求FC的长.
20.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;△A2B2C2的面积是 平方单位.
21.(10分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
22.(10分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
超市
女工人数占比
62.5%
62.5%
50%
75%
超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
23.(12分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?
24.(14分)为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)这次参与调查的村民人数为 人;
(2)请将条形统计图补充完整;
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题解析:要使分式有意义,
则1-x≠0,
解得:x≠1.
故选D.
2、D
【解析】
试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.
∴此题可记为1.2×105平方米.
考点:科学记数法
3、B
【解析】
由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
【详解】
解:∵图象开口向下,∴a<0,
∵对称轴为直线x=2,∴>0,∴b>0,
∵与y轴的交点在x轴的下方,∴c<0,
∴abc>0,故①错误.
∵对称轴为直线x=2,∴=2,∴a=,
∵由图象可知当x=1时,y>0,
∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
∴3b+4c>0,故②错误.
∵由图象可知OA<1,且OA=OC,
∴OC<1,即-c<1,
∴c>-1,故③正确.
∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
整理可得ac-b+1=0,
两边同时乘c可得ac2-bc+c=0,
∴方程有一个根为x=-c,
由③可知-c=OA,而当x=OA是方程的根,
∴x=-c是方程的根,即假设成立,故④正确.
综上可知正确的结论有三个:③④.
故选B.
【点睛】
本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
4、C
【解析】
由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:6400000=6.4×106,
故选C.
点睛:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、D
【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.
【详解】
解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
B、该班考试成绩的众数是28分,此选项正确,不合题意;
C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
意;
D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
故选项D错误,符合题意.
故选D.
【点睛】
此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
6、B
【解析】
连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
【详解】
解:连接OB,OC.
∵∠BOC=2∠BAC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴OB=OC=BC=1,
∴的长=,
故选B.
【点睛】
考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
7、D
【解析】
A、表示81的算术平方根;B、先算-6的平方,然后再求−的值;C、利用完全平方公式计算即可;D、=.
【详解】
A、=9,故A错误;
B、-=−=-6,故B错误;
C、()2=2+2+3=5+2,故C错误;
D、==4,故D正确.
故选D.
【点睛】
本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.
8、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
5.2×105=520000,
故选A.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、C
【解析】
设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
【详解】
解:设二,三月份平均每月降价的百分率为.
根据题意,得=1.
解得,(不合题意,舍去).
答:二,三月份平均每月降价的百分率为10%
【点睛】
本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
10、B
【解析】
A. y=-4x+5是一次函数,故此选项错误;
B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;
C. y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;
D. y=是组合函数,故此选项错误.
故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、x(x﹣2)(x﹣1)2
【解析】
先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.
【详解】
解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2
故答案为x(x﹣2)(x﹣1)2
【点睛】
此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.
12、1.
【解析】
根据立体图形画出它的主视图,再求出面积即可.
【详解】
主视图如图所示,
∵主视图是由1个棱长均为1的正方体组成的几何体,
∴主视图的面积为1×12=1.
故答案为:1.
【点睛】
本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.
13、y=﹣x+1
【解析】
根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
【详解】
∵一次函数y随x的增大而减小,
∴k<0,
∵一次函数的解析式,过点(1,0),
∴满足条件的一个函数解析式是y=-x+1,
故答案为y=-x+1.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
14、7π
【解析】
连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出的长.
【详解】
连接OD,
∵直线DE与⊙O相切于点D,
∴∠EDO=90°,
∵∠CDE=20°,
∴∠ODB=180°-90°-20°=70°,
∵OD=OB,
∴∠ODB=∠OBD=70°,
∴∠AOD=140°,
∴的长==7π,
故答案为:7π.
【点睛】
本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.
15、12.2
【解析】
∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==11-1;
AC==,AD==1,∴S△ACD==1=11-1
∴第n个等腰直角三角形的面积是1n-1.∴S△AEF=14-1=4,S△AFG=12-1=8,
由这五个等腰直角三角形所构成的图形的面积为+1+1+4+8=12.2.故答案为12.2.
16、.
【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x,每天相对于前一天就上涨到1+x,由此列出方程解答即可.
【详解】
设这两天此股票股价的平均增长率为x,由题意得
(1﹣10%)(1+x)2=1.
故答案为:(1﹣10%)(1+x)2=1.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为
17、1.
【解析】
试题解析:连接OE,如下图所示,
则:OE=OA=R,
∵AB是⊙O的直径,弦EF⊥AB,
∴ED=DF=4,
∵OD=OA-AD,
∴OD=R-2,
在Rt△ODE中,由勾股定理可得:
OE2=OD2+ED2,
∴R2=(R-2)2+42,
∴R=1.
考点:1.垂径定理;2.解直角三角形.
三、解答题(共7小题,满分69分)
18、(1);(2).
【解析】
【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
∴转动转盘一次,求转出的数字是-2的概率为=;
(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
第一次 第二次
1
-2
3
1
(1,1)
(1,-2)
(1,3)
-2
(-2,1)
(-2,-2)
(-2,3)
3
(3,1)
(3,-2)
(3,3)
由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
19、 (1)见解析;(2).
【解析】
分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;
(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.
详解:(1)证明:连接BE.
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE⊥AC,
而点E为AC的中点,
∴BE垂直平分AC,
∴BA=BC;
(2)解:∵AF为切线,
∴AF⊥AB,
∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,
∴∠FAC=∠ABE,
∴tan∠ABE=∠FAC=,
在Rt△ABE中,tan∠ABE==,
设AE=x,则BE=2x,
∴AB=x,即x=5,解得x=,
∴AC=2AE=2,BE=2
作CH⊥AF于H,如图,
∵∠HAC=∠ABE,
∴Rt△ACH∽Rt△BAC,
∴==,即==,
∴HC=2,AH=4,
∵HC∥AB,
∴=,即=,解得FH=
在Rt△FHC中,FC==.
点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.
20、(1)(2,﹣2);
(2)(1,0);
(3)1.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=1平方单位.
故答案为1.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
21、水坝原来的高度为12米
【解析】
试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.
试题解析:设BC=x米,
在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,
在Rt△EBD中,
∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,
即2+x=4+,解得x=12,即BC=12,
答:水坝原来的高度为12米..
考点:解直角三角形的应用,坡度.
22、(1)32(人),25(人);(2);(3)乙同学,见解析.
【解析】
(1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
(2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
(3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.
【详解】
解:(1)A超市共有员工:20÷62.5%=32(人),
∵360°-80°-100°-120°=60°,
∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,
∴B超市有女工:20×=25(人);
(2)C超市有女工:20×=30(人).
四个超市共有女工:20×=90(人).
从这些女工中随机选出一个,正好是C超市的概率为=.
(3)乙同学.
理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),
再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.
【点睛】
本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
23、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元
【解析】
利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;
【详解】
(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;
(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,
∵抛物线开口向下,
∴当x=11时,y有最大值1805,
答:售价定为189元,利润最大1805元;
【点睛】
本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.
24、 (1)120;(2)42人;(3) 90°;(4)
【解析】
(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;
(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;
(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;
(4)利用树状图法列举出所有的可能进而得出概率.
【详解】
(1)这次参与调查的村民人数为:24÷20%=120(人);
故答案为:120;
(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),
如图所示:
;
(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;
(4)如图所示:
,
一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,
故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.
【点睛】
此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.
内蒙古鄂托克旗重点达标名校2021-2022学年中考联考数学试题含解析: 这是一份内蒙古鄂托克旗重点达标名校2021-2022学年中考联考数学试题含解析,共25页。试卷主要包含了下列运算正确的是,我市连续7天的最高气温为,下列四个实数中是无理数的是等内容,欢迎下载使用。
2022年无锡市南长区重点达标名校中考联考数学试卷含解析: 这是一份2022年无锡市南长区重点达标名校中考联考数学试卷含解析,共18页。试卷主要包含了若分式有意义,则a的取值范围为等内容,欢迎下载使用。
2022年浙江杭州上城区重点达标名校中考联考数学试卷含解析: 这是一份2022年浙江杭州上城区重点达标名校中考联考数学试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,计算等内容,欢迎下载使用。