2022届辽宁省锦州黑山县市级名校中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
2.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )
A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10
3.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
4.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
5.的平方根是( )
A.2 B. C.±2 D.±
6.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是 ( )
A.-3 B.0 C.3 D.9
7.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是( )
A.﹣1 B.3 C.﹣3 D.1
8.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
9.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
A.3 B.4 C.6 D.8
10.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.
12.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.
13.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
14.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,若CD=2,则OE的长为_____.
15.比较大小:_____1.
16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.
三、解答题(共8题,共72分)
17.(8分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
18.(8分)如图,在Rt△ABC中,∠C=90°,AC,tanB,半径为2的⊙C分别交AC,BC于点D、E,得到DE弧.求证:AB为⊙C的切线.求图中阴影部分的面积.
19.(8分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:
(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;
(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;
(3)若线段FG∥x轴,则此段时间,甲机器人的速度为 米/分;
(4)求A、C两点之间的距离;
(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.
20.(8分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
(1)求证:∠BDP=90°.
(2)若m=4,求BE的长.
(3)在点P的整个运动过程中.
①当AF=3CF时,求出所有符合条件的m的值.
②当tan∠DBE=时,直接写出△CDP与△BDP面积比.
21.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少名学生进行了抽样调查?本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
22.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
23.(12分)小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40米/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1与x的函数图象如图所示,根据图象解决下列问题:
(1)小新的速度为_____米/分,a=_____;并在图中画出y2与x的函数图象
(2)求小新路过小华家后,y1与x之间的函数关系式.
(3)直接写出两人离小华家的距离相等时x的值.
24.如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标为(﹣2,m)
(1)求反比例函数的解析式和一次函数的解析式;
(2)连结BO,求△AOB的面积;
(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
2、C
【解析】
本题根据科学记数法进行计算.
【详解】
因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,
故选C.
【点睛】
本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.
3、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
4、B
【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
5、D
【解析】
先化简,然后再根据平方根的定义求解即可.
【详解】
∵=2,2的平方根是±,
∴的平方根是±.
故选D.
【点睛】
本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.
6、D
【解析】
解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;
把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;
把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;
把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;
把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;
把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;
把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;
把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.
7、B
【解析】
把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
【详解】
解:∵若,是一元二次方程的两个不同实数根,
∴,
∴
∴
故选B.
【点睛】
本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
8、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
9、C
【解析】
根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
【详解】
⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
则这个正n边形的中心角是60°,
n的值为6,
故选:C
【点睛】
考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
10、C
【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
【详解】
解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:
.
故选:C.
【点睛】
本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、AC=BC.
【解析】
分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.
详解:添加AC=BC,
∵△ABC的两条高AD,BE,
∴∠ADC=∠BEC=90°,
∴∠DAC+∠C=90°,∠EBC+∠C=90°,
∴∠EBC=∠DAC,
在△ADC和△BEC中
,
∴△ADC≌△BEC(AAS),
故答案为:AC=BC.
点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
12、2
【解析】
过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=3,求得DF=BF−BD=,根据勾股定理即可得到结论.
【详解】
解:过点E作EF⊥BC于F,
∴∠BFE=90°,
∵∠BAC=90°,AB=AC=4,
∴∠B=∠C=45°,BC=4,
∴△BEF是等腰直角三角形,
∵BE=AB+AE=6,
∴BF=EF=3,
∵D是BC的中点,
∴BD=2,
∴DF=BF−BD,
∴DE===2.
故答案为2.
【点睛】
本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键.
13、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.
【点睛】
本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
14、
【解析】
连接OA,所以∠OAC=90°,因为AB=AC,所以∠B=∠C,根据圆周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度数,在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.
【详解】
连接OA,
由题意可知∠OAC=90°,
∵AB=AC,
∴∠B=∠C,
根据圆周角定理可知∠AOD=2∠B=2∠C,
∵∠OAC=90°
∴∠C+∠AOD=90°,
∴∠C+2∠C=90°,
故∠C=30°=∠B,
∴在Rt△OAC中,sin∠C==,
∴OC=2OA,
∵OA=OD,
∴OD+CD=2OA,
∴CD=OA=2,
∵OB=OA,
∴∠OAE=∠B=30°,
∴在Rt△OAE中,sin∠OAE==,
∴OA=2OE,
∴OE=OA=,
故答案为.
【点睛】
本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.
15、
【解析】
先将1化为根号的形式,根据被开方数越大值越大即可求解.
【详解】
解: , ,
,
故答案为>.
【点睛】
本题考查实数大小的比较,比较大小时,常用的方法有:作差法,作商法,如果有一个是二次根式,要把另一个也化为二次根式的形式,根据被开方数的大小进行比较.
16、1
【解析】
试题分析:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.
三、解答题(共8题,共72分)
17、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
18、 (1)证明见解析;(2)1-π.
【解析】
(1)解直角三角形求出BC,根据勾股定理求出AB,根据三角形面积公式求出CF,根据切线的判定得出即可;
(2)分别求出△ACB的面积和扇形DCE的面积,即可得出答案.
【详解】
(1)过C作CF⊥AB于F.
∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.
∵△ACB的面积S,∴CF2,∴CF为⊙C的半径.
∵CF⊥AB,∴AB为⊙C的切线;
(2)图中阴影部分的面积=S△ACB﹣S扇形DCE1﹣π.
【点睛】
本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.
19、(1)距离是70米,速度为95米/分;(2)y=35x﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.
【解析】
(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A、B两点之间的距离;
(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;
(3)由图可知甲、乙速度相同;
(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;
(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.
【详解】
解:(1)由图象可知,A、B两点之间的距离是70米,
甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;
(2)设线段EF所在直线的函数解析式为:y=kx+b,
∵1×(95﹣60)=35,
∴点F的坐标为(3,35),
则,解得,
∴线段EF所在直线的函数解析式为y=35x﹣70;
(3)∵线段FG∥x轴,
∴甲、乙两机器人的速度都是60米/分;
(4)A、C两点之间的距离为70+60×7=490米;
(5)设前2分钟,两机器人出发x分钟相距21米,
由题意得,60x+70﹣95x=21,解得,x=1.2,
前2分钟﹣3分钟,两机器人相距21米时,
由题意得,35x﹣70=21,解得,x=2.1.
4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),
设线段GH所在直线的函数解析式为:y=kx+b,则,
,解得,
则直线GH的方程为y=x+,
当y=21时,解得x=4.6,
答:两机器人出发1.2分或2.1分或4.6分相距21米.
【点睛】
本题考查了一次函数的应用,读懂图像是解题关键..
20、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
【解析】
由知,再由知、,据此可得,证≌即可得;
易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
【详解】
如图1,
,
,
,
、,
,
,
≌,
.
,,
,
,
,
四边形ABEF是矩形,
设,则,
,
,
,
,
≌,
,
≌,
,
在中,,即,
解得:,
的长为1.
如图1,当点C在AF的左侧时,
,则,
,
,,
在中,由可得,
解得:负值舍去;
如图2,当点C在AF的右侧时,
,
,
,
,,
在中,由可得,
解得:负值舍去;
综上,m的值为或;
如图3,过点D作于点G,延长GD交BE于点H,
≌,
,
又,且,
,
当点D在矩形ABEF的内部时,
由可设、,
则,
,
则;
如图4,当点D在矩形ABEF的外部时,
由可设、,
则,
,
则,
综上,与面积比为或.
【点睛】
本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
21、(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.
【解析】
(1)根据条形统计图,求个部分数量的和即可;
(2)根据部分除以总体求得百分比;
(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.
【详解】
(1)4+8+10+18+10=50(名)
答:该校对50名学生进行了抽样调查.
(2)最喜欢足球活动的有10人,
,
∴最喜欢足球活动的人占被调查人数的20%.
(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)
=400÷20%
=2000(人)
则全校学生中最喜欢篮球活动的人数约为2000×=720(人).
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.
22、绳索长为20尺,竿长为15尺.
【解析】
设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
【详解】
设绳索长、竿长分别为尺,尺,
依题意得:
解得:,.
答:绳索长为20尺,竿长为15尺.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
23、(1)60;960;图见解析;(2)y1=60x﹣240(4≤x≤20);
(3)两人离小华家的距离相等时,x的值为2.4或12.
【解析】
(1)先根据小新到小华家的时间和距离即可求得小新的速度和小华家离书店的距离,然后根据小华的速度即可画出y2与x的函数图象;
(2)设所求函数关系式为y1=kx+b,由图可知函数图像过点(4,0),(20,960),则将两点坐标代入求解即可得到函数关系式;
(3)分小新还没到小华家和小新过了小华家两种情况,然后分别求出x的值即可.
【详解】
(1)由图可知,小新离小华家240米,用4分钟到达,则速度为240÷4=60米/分,
小新按此速度再走16分钟到达书店,则a=16×60=960米,
小华到书店的时间为960÷40=24分钟,
则y2与x的函数图象为:
故小新的速度为60米/分,a=960;
(2)当4≤x≤20时,设所求函数关系式为y1=kx+b(k≠0),
将点(4,0),(20,960)代入得:
,
解得:,
∴y1=60x﹣240(4≤x≤20时)
(3)由图可知,小新到小华家之前的函数关系式为:y=240﹣6x,
①当两人分别在小华家两侧时,若两人到小华家距离相同,
则240﹣6x=40x,
解得:x=2.4;
②当小新经过小华家并追上小华时,两人到小华家距离相同,
则60x﹣240=40x,
解得:x=12;
故两人离小华家的距离相等时,x的值为2.4或12.
24、(1)y=;y=x﹣;(2);(1)﹣2<x<0或x>1;
【解析】
(1)过A作AM⊥x轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式.
(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可.
(1)根据A、B的横坐标结合图象即可得出答案.
【详解】
解:
(1)过A作AM⊥x轴于M,
则AM=1,OA=,由勾股定理得:OM=1,
即A的坐标是(1,1),
把A的坐标代入y=得:k=1,
即反比例函数的解析式是y=.
把B(﹣2,n)代入反比例函数的解析式得:n=﹣,
即B的坐标是(﹣2,﹣),
把A、B的坐标代入y=ax+b得:,
解得:k=.b=﹣,
即一次函数的解析式是y=x﹣.
(2)连接OB,
∵y=x﹣,
∴当x=0时,y=﹣,
即OD=,
∴△AOB的面积是S△BOD+S△AOD=××2+××1=.
(1)一次函数的值大于反比例函数的值时x的取值范围是﹣2<x<0或x>1,
故答案为﹣2<x<0或x>1.
【点睛】
本题考查了一次函数与反比例函数的交点问题以及用待定系数法求函数的解析式,函数的图象的应用.熟练掌握相关知识是解题关键.
2023年辽宁省锦州市黑山县中考数学一模试卷(含解析): 这是一份2023年辽宁省锦州市黑山县中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省锦州市黑山县中考一模数学试题(含解析): 这是一份2023年辽宁省锦州市黑山县中考一模数学试题(含解析),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
辽宁省锦州市凌海市市级名校2021-2022学年中考猜题数学试卷含解析: 这是一份辽宁省锦州市凌海市市级名校2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了- 的绝对值是,下列计算正确的是等内容,欢迎下载使用。