年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析

    2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析第1页
    2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析第2页
    2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析

    展开

    这是一份2022届辽宁省阜新实验中学中考冲刺卷数学试题含解析,共21页。试卷主要包含了某校40名学生参加科普知识竞赛,下列计算结果为a6的是,如图,右侧立体图形的俯视图是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.下列计算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a10
    2.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )
    A.米 B.米
    C.米 D.米
    3.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于(  )

    A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b
    4.实数a,b在数轴上的位置如图所示,以下说法正确的是( )

    A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
    5.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是(  )
    A. B. C. D.
    6.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )

    A.50.5~60.5 分 B.60.5~70.5 分 C.70.5~80.5 分 D.80.5~90.5 分
    7.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为(  )
    A. B.2 C. D.
    8.下列计算结果为a6的是(  )
    A.a2•a3 B.a12÷a2 C.(a2)3 D.(﹣a2)3
    9.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为(  )

    A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)
    10.如图,右侧立体图形的俯视图是( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .

    12.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.

    13.一元二次方程x2﹣4=0的解是._________
    14.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.

    15.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.

    16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:

    其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
    17.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.

    19.(5分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
    20.(8分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

    (1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
    ①求证:△OCP∽△PDA;
    ②若△OCP与△PDA的面积比为1:4,求边AB的长.
    (2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
    21.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
    22.(10分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
    23.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.

    24.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
    (1)证明:∠BAC=∠DAC.
    (2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.
    【详解】
    A、a2•a3=a5,错误;
    B、(a2)3=a6,正确;
    C、不是同类项,不能合并,错误;
    D、a5+a5=2a5,错误;
    故选B.
    【点睛】
    本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.
    2、D
    【解析】
    先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.
    故选D
    3、A
    【解析】
    根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.
    【详解】
    由数轴可知,b<a<0<c,
    ∴c-a>0,a+b<0,
    则|c-a|-|a+b|=c-a+a+b=c+b,
    故选A.
    【点睛】
    本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.
    4、D
    【解析】
    根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
    【详解】
    A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
    B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
    C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
    D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
    ∴ 选D.
    5、C
    【解析】
    试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
    考点:简单几何体的三视图.
    6、C
    【解析】
    分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.
    详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C.
    点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    7、C
    【解析】
    根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
    【详解】
    如图所示,

    单位圆的半径为1,则其内接正六边形ABCDEF中,
    △AOB是边长为1的正三角形,
    所以正六边形ABCDEF的面积为
    S6=6××1×1×sin60°=.
    故选C.
    【点睛】
    本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
    8、C
    【解析】
    分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.
    【详解】
    A、a2•a3=a5,此选项不符合题意;
    B、a12÷a2=a10,此选项不符合题意;
    C、(a2)3=a6,此选项符合题意;
    D、(-a2)3=-a6,此选项不符合题意;
    故选C.
    【点睛】
    本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.
    9、B
    【解析】
    连接AC,如图所示.
    ∵四边形OABC是菱形,
    ∴OA=AB=BC=OC.
    ∵∠ABC=60°,
    ∴△ABC是等边三角形.
    ∴AC=AB.
    ∴AC=OA.
    ∵OA=1,
    ∴AC=1.
    画出第5次、第6次、第7次翻转后的图形,如图所示.
    由图可知:每翻转6次,图形向右平移2.
    ∵3=336×6+1,
    ∴点B1向右平移1322(即336×2)到点B3.
    ∵B1的坐标为(1.5, ),
    ∴B3的坐标为(1.5+1322,),
    故选B.

    点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键.
    10、A
    【解析】
    试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.
    考点:简单组合体的三视图.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    试题解析:连接OE、AE,

    ∵点C为OA的中点,
    ∴∠CEO=30°,∠EOC=60°,
    ∴△AEO为等边三角形,
    ∴S扇形AOE=
    ∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)
    =
    =
    =.
    12、1
    【解析】
    试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
    考点:求反比例函数解析式.
    13、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    14、4
    【解析】
    首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
    【详解】
    在Rt△AOB中,∵∠ABO=30°,AO=1,
    ∴AB=2,BO=
    ①当点P从O→B时,如图1、图2所示,点Q运动的路程为,

    ②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°

    ∵∠ABO=30°
    ∴∠BAO=60°
    ∴∠OQD=90°﹣60°=30°
    ∴AQ=2AC,
    又∵CQ=,
    ∴AQ=2
    ∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
    ③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
    ④当点P从A→O时,点Q运动的路程为AO=1,
    ∴点Q运动的总路程为:+1+2﹣+1=4
    故答案为4.
    考点:解直角三角形
    15、1
    【解析】
    根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.
    【详解】
    解:由题意可得,
    A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,
    ∵2018÷4=504…2,2018÷2=1009,
    ∴点A2018的横坐标为:1,
    故答案为1.
    【点睛】
    本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.
    16、
    【解析】
    分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
    详解:∵平均数是12,
    ∴这组数据的和=12×7=84,
    ∴被墨汁覆盖三天的数的和=84−4×12=36,
    ∵这组数据唯一众数是13,
    ∴被墨汁覆盖的三个数为:10,13,13,


    故答案为
    点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
    17、;
    【解析】
    设第一天走了x里,则第二天走了里,第三天走了里…第六天走了里,根据总路程为378里列出方程可得答案.
    【详解】
    解:设第一天走了x里, 则第二天走了里,第三天走了里…第六天走了里,
    依题意得:,
    故答案:.
    【点睛】
    本题主要考查由实际问题抽象出一元一次方程.

    三、解答题(共7小题,满分69分)
    18、(1)n=1,k=1.(2)当2≤x≤1时,1≤y≤2.
    【解析】
    【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;
    (2)由k=1>0结合反比例函数的性质,即可求出:当2≤x≤1时,1≤y≤2.
    【详解】(1)当x=1时,n=﹣×1+4=1,
    ∴点B的坐标为(1,1).
    ∵反比例函数y=过点B(1,1),
    ∴k=1×1=1;
    (2)∵k=1>0,
    ∴当x>0时,y随x值增大而减小,
    ∴当2≤x≤1时,1≤y≤2.
    【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.
    19、(1);(2)这个游戏不公平,理由见解析.
    【解析】
    (1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.
    【详解】
    解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,
    故从袋中随机摸出一球,标号是1的概率为:;
    (2)这个游戏不公平.
    画树状图得:

    ∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,
    ∴P(甲胜)=,P(乙胜)=.
    ∴P(甲胜)≠P(乙胜),
    故这个游戏不公平.
    【点睛】
    本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
    20、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2.

    【解析】
    试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;
    (2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.
    试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;
    (2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.

    考点:翻折变换(折叠问题);矩形的性质;相似形综合题.
    21、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【解析】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;
    (2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.
    【详解】
    (1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得

    解得,
    答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
    (2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得

    解得:,
    因为a是整数,
    所以a=6,7,8;
    则(10﹣a)=4,3,2;
    三种方案:
    ①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
    ②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
    ③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
    购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
    【点睛】
    此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
    22、
    【解析】
    先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
    【详解】
    解:原式


    【点睛】
    考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
    23、(1);(2)-2或-1;(3)-1≤n

    相关试卷

    2023年辽宁省阜新市实验中学中考数学二模模拟试题(原卷版+解析版):

    这是一份2023年辽宁省阜新市实验中学中考数学二模模拟试题(原卷版+解析版),文件包含精品解析2023年辽宁省阜新市实验中学中考数学二模模拟试题原卷版docx、精品解析2023年辽宁省阜新市实验中学中考数学二模模拟试题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。

    初中数学北京课改版七年级下册7.2 实验课后练习题:

    这是一份初中数学北京课改版七年级下册7.2 实验课后练习题,共30页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析:

    这是一份辽宁省大连市中学山区2022年中考冲刺卷数学试题含解析,共22页。试卷主要包含了分式方程的解为,下列命题是真命题的是,某一公司共有51名员工,下列各式计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map