2022届内蒙古杭锦后旗第六中学中考押题数学预测卷含解析
展开
这是一份2022届内蒙古杭锦后旗第六中学中考押题数学预测卷含解析,共17页。试卷主要包含了答题时请按要求用笔,如图,反比例函数,如图所示,有一条线段是.等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下. 成绩人数(频数)百分比(频率)0 5 0.2105 15 0.42050.1根据表中已有的信息,下列结论正确的是( )A.共有40名同学参加知识竞赛B.抽到的同学参加知识竞赛的平均成绩为10分C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D.抽到同学参加知识竞赛成绩的中位数为15分2.计算6m6÷(-2m2)3的结果为( )A. B. C. D.3.如图,,交于点,平分,交于. 若,则 的度数为( ) A.35o B.45o C.55o D.65o4.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是 A.20、20 B.30、20 C.30、30 D.20、305.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )A.k>1 B.k>0 C.k≥1 D.k<16.将不等式组的解集在数轴上表示,下列表示中正确的是( )A. B. C. D.7.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A.9π B.10π C.11π D.12π8.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A.1 B.2 C.3 D.49.如图所示,有一条线段是()的中线,该线段是( ). A.线段GH B.线段AD C.线段AE D.线段AF10.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )A.50° B.110° C.130° D.150°二、填空题(共7小题,每小题3分,满分21分)11.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.12.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.15.函数中自变量的取值范围是______________16.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)17.若分式的值为正,则实数的取值范围是__________________.三、解答题(共7小题,满分69分)18.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时? 19.(5分)计算:2-1+20160-3tan30°+|-|20.(8分)解方程组: .21.(10分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).22.(10分)先化简,再求值:﹣÷,其中a=1.23.(12分)已知△ABC 中,AD 是∠BAC 的平分线,且 AD=AB,过点 C 作 AD 的垂线,交 AD 的延长线于点 H.(1)如图 1,若∠BAC=60°.①直接写出∠B 和∠ACB 的度数;②若 AB=2,求 AC 和 AH 的长;(2)如图 2,用等式表示线段 AH 与 AB+AC 之间的数量关系,并证明.24.(14分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.【详解】∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;∵0分同学10人,其频率为0.2,∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;∵第25、26名同学的成绩为10分、15分,∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.故选:B.【点睛】本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.2、D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=, 故选D.点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.3、D【解析】分析:根据平行线的性质求得∠BEC的度数,再由角平分线的性质即可求得∠CFE 的度数.详解: 又∵EF平分∠BEC,.故选D.点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.4、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.5、A【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.【详解】解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选A.【点评】本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.6、B【解析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解:不等式可化为:,即.
∴在数轴上可表示为.故选B.“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7、B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.8、C【解析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.9、B【解析】
根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.10、C【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、50°【解析】
利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.12、-1【解析】试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.13、【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.14、11≤x<1【解析】
根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[]=5,得: ,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.15、x≤2且x≠1【解析】
解:根据题意得:且x−1≠0,解得:且 故答案为且16、>【解析】
要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙组的平均数为: =4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17、x>0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键. 三、解答题(共7小题,满分69分)18、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】
(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=.当x=时,y2=−5×+1=,∴相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=h.∴甲、乙两班首次相距4千米时所用时间是h.19、 【解析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;【详解】原式= = =.【点睛】此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.20、【解析】
方程组整理后,利用加减消元法求出解即可.【详解】解:方程组整理得: ①+②得:9x=-45,即x=-5,把x=-代入①得: 解得:则原方程组的解为【点睛】本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.21、 作a∥b∥c∥d,可得交点P与P′ 【解析】
(1)根据勾股定理计算即可;(2)利用平行线等分线段定理即可解决问题.【详解】(I)AC==,故答案为:;(II)如图直线l1,直线l2即为所求;
理由:∵a∥b∥c∥d,且a与b,b与c,c与d之间的距离相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案为作a∥b∥c∥d,可得交点P与P′.【点睛】本题考查作图-应用与设计,勾股定理,平行线等分线段定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、-1【解析】
原式第二项利用除法法则变形,约分后通分,并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【详解】解:原式=﹣•2(a﹣3)=﹣==,当a=1时,原式==﹣1.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23、(1)①45°,②;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.证明见解析.【解析】
(1)①先根据角平分线的定义可得∠BAD=∠CAD=30°,由等腰三角形的性质得∠B=75°,最后利用三角形内角和可得∠ACB=45°;②如图 1,作高线 DE,在 Rt△ADE 中,由∠DAC=30°,AB=AD=2 可得 DE=1,AE=, 在 Rt△CDE 中,由∠ACD=45°,DE=1,可得 EC=1,AC= +1,同理可得 AH 的长;(2)如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH,易证△ACH≌△AFH,则 AC=AF,HC=HF, 根据平行线的性质和等腰三角形的性质可得AG=AH,再由线段的和可得结论.【详解】(1)①∵AD 平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如图 1,过 D 作 DE⊥AC 交 AC 于点 E, 在 Rt△ADE 中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在 Rt△CDE 中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在 Rt△ACH 中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)线段 AH 与 AB+AC 之间的数量关系:2AH=AB+AC.证明:如图 2,延长 AB 和 CH 交于点 F,取 BF 的中点 G,连接 GH. 易证△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【点睛】本题是三角形的综合题,难度适中,考查了三角形全等的性质和判定、等腰三角形的性质和判定、勾股定理、三角形的中位线定理等知识,熟练掌握这些性质是本题的关键,第(2)问构建等腰三角形是关键.24、(1)反比例函数表达式为,正比例函数表达式为;(2),.【解析】试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.试题解析:()把代入反比例函数表达式,得,解得,∴反比例函数表达式为,把代入正比例函数,得,解得,∴正比例函数表达式为.()直线由直线向上平移个单位所得,∴直线的表达式为,由,解得或,∵在第四象限,∴,连接,∵,,,.
相关试卷
这是一份内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析,共25页。试卷主要包含了下列命题中真命题是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届内蒙古通辽市中考押题数学预测卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。
这是一份2022届内蒙古根河市阿龙山中学中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列计算正确的是,下列实数中,最小的数是,计算3–等内容,欢迎下载使用。