2022届内蒙古鄂尔多斯市名校中考四模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为( )
A.4 B.5 C.6 D.7
2.为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:
A.140元 B.150元 C.160元 D.200元
3.二次函数y=(2x-1)2+2的顶点的坐标是( )
A.(1,2) B.(1,-2) C.(,2) D.(-,-2)
4.若2m﹣n=6,则代数式m-n+1的值为( )
A.1 B.2 C.3 D.4
5.如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是( )
A.4 B.4.5 C.5 D.5.5
6.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )
A. B. C. D.
7.如图,在中,,分别以点和点为圆心,以大于的长为半径作弧,两弧相交于点和点,作直线交于点,交于点,连接.若,则的度数是( )
A. B. C. D.
8.如图是一个几何体的主视图和俯视图,则这个几何体是( )
A.三棱柱 B.正方体 C.三棱锥 D.长方体
9.方程的解是( )
A. B. C. D.
10.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为( )
A.= B.=
C.= D.=
11.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
12.如图,△ABC中,若DE∥BC,EF∥AB,则下列比例式正确的是( )
A. B.
C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.
14.计算:=_________ .
15.如图,在等腰中,,点在以斜边为直径的半圆上,为的中点.当点沿半圆从点运动至点时,点运动的路径长是________.
16.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.
17.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .
18.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
(1)求点和点的坐标;
(2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
①当时,求关于的函数关系式;
②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
③直接写出②中的最大值是 .
20.(6分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
(1)求k的值;
(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.
21.(6分)如图,是等腰三角形,,.
(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);
(2)判断是否为等腰三角形,并说明理由.
22.(8分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
23.(8分)请根据图中提供的信息,回答下列问题:
一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)
24.(10分)如图,在菱形ABCD中,,点E在对角线BD上. 将线段CE绕点C顺时针旋转,得到CF,连接DF.
(1)求证:BE=DF;
(2)连接AC, 若EB=EC ,求证:.
25.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
26.(12分)先化简,再求值:,其中m=2.
27.(12分)鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.
据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?
在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.
此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得DC′===1.故选B.
2、B
【解析】
试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.
故选B.
考点:一元一次方程的应用
3、C
【解析】
试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
考点:二次函数
点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
4、D
【解析】
先对m-n+1变形得到(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.
【详解】
mn+1
=(2m﹣n)+1
当2m﹣n=6时,原式=×6+1=3+1=4,故选:D.
【点睛】
本题考查代数式,解题的关键是掌握整体代入法.
5、B
【解析】
试题分析:根据平行线分线段成比例可得,然后根据AC=1,CE=6,BD=3,可代入求解DF=1.2.
故选B
考点:平行线分线段成比例
6、B
【解析】
观察图形,利用中心对称图形的性质解答即可.
【详解】
选项A,新图形不是中心对称图形,故此选项错误;
选项B,新图形是中心对称图形,故此选项正确;
选项C,新图形不是中心对称图形,故此选项错误;
选项D,新图形不是中心对称图形,故此选项错误;
故选B.
【点睛】
本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.
7、B
【解析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
8、A
【解析】
【分析】根据三视图的知识使用排除法即可求得答案.
【详解】如图,由主视图为三角形,排除了B、D,
由俯视图为长方形,可排除C,
故选A.
【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.
9、D
【解析】
按照解分式方程的步骤进行计算,注意结果要检验.
【详解】
解:
经检验x=4是原方程的解
故选:D
【点睛】
本题考查解分式方程,注意结果要检验.
10、A
【解析】
分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.
详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.
故选A.
点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.
11、A
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
故选A.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
12、C
【解析】
根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.
【详解】
解:∵DE∥BC,
∴=,BD≠BC,
∴≠,选项A不正确;
∵DE∥BC,EF∥AB,
∴=,EF=BD,=,
∵≠,
∴≠,选项B不正确;
∵EF∥AB,
∴=,选项C正确;
∵DE∥BC,EF∥AB,
∴=,=,CE≠AE,
∴≠,选项D不正确;
故选C.
【点睛】
本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
试题解析:画树状图得:
由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,
故答案为.
14、2
【解析】
利用平方差公式求解,即可求得答案.
【详解】
=()2-()2=5-3=2.
故答案为2.
【点睛】
此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.
15、π
【解析】
取的中点,取的中点,连接,,,则,故的轨迹为以为圆心,为半径的半圆弧,根据弧长公式即可得轨迹长.
【详解】
解:如图,取的中点,取的中点,连接,,,
∵在等腰中,,点在以斜边为直径的半圆上,
∴,
∵为的中位线,
∴,
∴当点沿半圆从点运动至点时,点的轨迹为以为圆心,为半径的半圆弧,
∴弧长,
故答案为:.
【点睛】
本题考查了点的轨迹与等腰三角形的性质.解决动点问题的关键是在运动中,把握不变的等量关系(或函数关系),通过固定的等量关系(或函数关系),解决动点的轨迹或坐标问题.
16、-23≤y≤2
【解析】
先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.
【详解】
解:∵a=-1,
∴抛物线的开口向下,故有最大值,
∵对称轴x=-3,
∴当x=-3时y最大为2,
当x=2时y最小为-23,
∴函数y的取值范围为-23≤y≤2,
故答案为:-23≤y≤2.
【点睛】
本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.
17、1
【解析】
∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
∴由中点公式得:c=,
∴a+b=2c,
∴a+b-2c=1.
故答案为1.
18、16
【解析】
设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.
【详解】
解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b= a+=,因为,所以10<<20,解得: 故答案为:16.
【点睛】
本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)①;②当时,;
当时, ;当时, ;③.
【解析】
(1)根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;
【详解】
解:(1)由题意是等腰直角三角形,
(2) ,
线直的解析式为,直线的解析式
时,直线恰好过点.
,
直线的解析式为,直线的解析式为
①当时,,
②当时,
当时,
当时,
③当时,
,
时, 的最大值为.
当时,
.
时, 的值最大,最大值为.
当时,,
时, 的最大值为,
综上所述,最大值为
故答案为.
【点睛】
本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.
20、(1)k=11;(1)C(2,0).
【解析】
试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
试题解析:
(1)∵点A在直线y=2x上,其横坐标为1.
∴y=2×1=6,∴A(1,6),
把点A(1,6)代入,得,
解得:k=11;
(1)由(1)得:,
∵点B为此反比例函数图象上一点,其纵坐标为2,
∴,解得x= 4,∴B(4,2),
∵CB∥OA,
∴设直线BC的解析式为y=2x+b,
把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
∴直线BC的解析式为y=2x﹣9,
当y=0时,2x﹣9=0,解得:x=2,
∴C(2,0).
21、(1)作图见解析 (2)为等腰三角形
【解析】
(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.
(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.
【详解】
(1)具体如下:
(2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,
∵
∴是否为等腰三角形.
【点睛】
本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.
22、(1)反比例函数解析式为y=﹣,一次函数的解析式为y=﹣x﹣1;(1)6;(3)x<﹣4或0<x<1.
【解析】
试题分析:(1)先把点A的坐标代入反比例函数解析式,即可得到m=﹣8,再把点B的坐标代入反比例函数解析式,即可求出n=1,然后利用待定系数法确定一次函数的解析式;
(1)先求出直线y=﹣x﹣1与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(3)观察函数图象得到当x<﹣4或0<x<1时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.
试题解析:(1)把A(﹣4,1)代入,得m=1×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=1,把A(﹣4,1)和B(1,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣1;
(1)y=﹣x﹣1中,令y=0,则x=﹣1,即直线y=﹣x﹣1与x轴交于点C(﹣1,0),∴S△AOB=S△AOC+S△BOC=×1×1+×1×4=6;
(3)由图可得,不等式的解集为:x<﹣4或0<x<1.
考点:反比例函数与一次函数的交点问题;待定系数法求一次函数解析式.
23、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.
【解析】
(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;
(2)计算出两商场得费用,比较即可得到结果.
【详解】
解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,
根据题意得:3x+4(48﹣x)=152,
解得:x=40,
则一个水瓶40元,一个水杯是8元;
(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n
乙商场所需费用为5×40+(n﹣5×2)×8=120+8n
则∵n>10,且n为整数,
∴160+6.4n﹣(120+8n)=40﹣1.6n
讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,
∴选择乙商场购买更合算.
当n>25时,40﹣1.6n<0,即 160+0.64n<120+8n,
∴选择甲商场购买更合算.
【点睛】
此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.
24、证明见解析
【解析】
【分析】(1)根据菱形的性质可得BC=DC,,再根据,从而可得 ,继而得=,由旋转的性质可得=,证明≌,即可证得=;
(2)根据菱形的对角线的性质可得,,从而得,由,可得,由(1)可知,可推得,即可得,问题得证.
【详解】(1)∵四边形ABCD是菱形,
∴,,
∵,
∴ ,
∴,
∵线段由线段绕点顺时针旋转得到,
∴,
在和中,
,
∴≌,
∴;
(2)∵四边形ABCD是菱形,
∴,,
∴,
∵,
∴,
由(1)可知,,
∴,
∴,
∴.
【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.
25、解:(1)10,50;
(2)解法一(树状图):
从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
因此P(不低于30元)= ;
解法二(列表法):
(以下过程同“解法一”)
【解析】
试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.
试题解析:(1)10,50;
(2)解法一(树状图):
,
从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
因此P(不低于30元)==;
解法二(列表法):
0
10
20
30
0
﹣﹣
10
20
30
10
10
﹣﹣
30
40
20
20
30
﹣﹣
50
30
30
40
50
﹣﹣
从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
因此P(不低于30元)==;
考点:列表法与树状图法.
【详解】
请在此输入详解!
26、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
27、(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.
【解析】
(1)设每盒售价应为x元,根据月销量=980-30×超出14元的部分结合月销量不低于800盒,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;
(2)根据总利润=每盒利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.
【详解】
解:设每盒售价元.
依题意得:
解得:
答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元
依题意:
令:
化简:
解得:(舍)
,
答:的值为.
【点睛】
考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.
内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析: 这是一份内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,计算 的结果为,下列计算结果是x5的为,一次函数y=kx+k等内容,欢迎下载使用。
内蒙古鄂尔多斯市康巴什新区达标名校2022年中考二模数学试题含解析: 这是一份内蒙古鄂尔多斯市康巴什新区达标名校2022年中考二模数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,在中,,,下列结论中,正确的是,点A等内容,欢迎下载使用。
内蒙古鄂尔多斯市鄂托克旗2022年中考四模数学试题含解析: 这是一份内蒙古鄂尔多斯市鄂托克旗2022年中考四模数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下面运算正确的是,要使式子有意义,的取值范围是等内容,欢迎下载使用。