终身会员
搜索
    上传资料 赚现金
    2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析01
    2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析02
    2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析

    展开
    这是一份2022届山东省临沂市蒙阴县重点中学中考数学模拟精编试卷含解析,共26页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。

    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )
    A.B.C.D.
    2.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )
    A.B.C.D.
    3.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是( )
    A.15,0.125B.15,0.25C.30,0.125D.30,0.25
    4.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )
    A.8×107B.880×108C.8.8×109D.8.8×1010
    5.若关于x、y的方程组有实数解,则实数k的取值范围是( )
    A.k>4B.k<4C.k≤4D.k≥4
    6.如图,已知AB∥CD,AD=CD,∠1=40°,则∠2的度数为( )
    A.60°B.65°C.70°D.75°
    7.如图是一个几何体的主视图和俯视图,则这个几何体是( )
    A.三棱柱B.正方体C.三棱锥D.长方体
    8.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是
    已知:如图,在中,点D,E,F分别在边AB,AC,BC上,且,,
    求证:∽.
    证明:又,,,,∽.
    A.B.C.D.
    9.下列各式计算正确的是( )
    A.B.C.D.
    10.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是
    ①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.
    A.1B.2C.1D.4
    11.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:
    ①小明家距学校4千米;
    ②小明上学所用的时间为12分钟;
    ③小明上坡的速度是0.5千米/分钟;
    ④小明放学回家所用时间为15分钟.
    其中正确的个数是( )
    A.1个B.2个C.3个D.4个
    12.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰( )
    A.甲B.乙C.丙D.丁
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.一个凸多边形的内角和与外角和相等,它是______边形.
    14.已知矩形ABCD,AD>AB,以矩形ABCD的一边为边画等腰三角形,使得它的第三个顶点在矩形ABCD的其他边上,则可以画出的不同的等腰三角形的个数为_______________.
    15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .
    16.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.
    17.如图,线段AB两端点坐标分别为A(﹣1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,﹣1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标________.
    18.如图,□ABCD中,E是BA的中点,连接DE,将△DAE沿DE折叠,使点A落在□ABCD内部的点F处.若∠CBF=25°,则∠FDA的度数为_________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
    20.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.
    (1)求此抛物线所对应的函数表达式.
    (2)求PF的长度,用含m的代数式表示.
    (3)当四边形PEDF为平行四边形时,求m的值.
    21.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 .
    22.(8分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.
    (1)求该抛物线的解析式;
    (2)阅读理解:
    在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.
    解决问题:
    ①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;
    ②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.
    23.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?
    24.(10分)如图,,,,求证:。
    25.(10分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.
    (1)求∠EPF的大小;
    (2)若AP=6,求AE+AF的值.
    26.(12分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
    (1)求证:∠F=∠B;
    (2)若AB=12,BG=10,求AF的长.
    27.(12分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.
    【详解】
    解:作AE⊥BC于E,
    则四边形AECD为矩形,
    ∴EC=AD=1,AE=CD=3,
    ∴BE=4,
    由勾股定理得,AB==5,
    ∴四边形ABCD的四条边之比为1:3:5:5,
    D选项中,四条边之比为1:3:5:5,且对应角相等,
    故选D.
    【点睛】
    本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.
    2、C
    【解析】
    根据各点在数轴上位置即可得出结论.
    【详解】
    由图可知,bA. ∵bB. ∵b0,故本选项错误;
    C. ∵bb,故本选项正确;
    D. ∵b故选C.
    3、D
    【解析】
    分析:
    根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.
    详解:
    由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,
    ∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,
    又∵被调查学生总数为120人,
    ∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.
    综上所述,选项D中数据正确.
    故选D.
    点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.
    4、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    880亿=880 0000 0000=8.8×1010,
    故选D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、C
    【解析】
    利用根与系数的关系可以构造一个两根分别是x,y的一元二次方程,方程有实数根,用根的判别式≥0来确定k的取值范围.
    【详解】
    解:∵xy=k,x+y=4,
    ∴根据根与系数的关系可以构造一个关于m的新方程,设x,y为方程的实数根.

    解不等式得

    故选:C.
    【点睛】
    本题考查了一元二次方程的根的判别式的应用和根与系数的关系.解题的关键是了解方程组有实数根的意义.
    6、C
    【解析】
    由等腰三角形的性质可求∠ACD=70°,由平行线的性质可求解.
    【详解】
    ∵AD=CD,∠1=40°,
    ∴∠ACD=70°,
    ∵AB∥CD,
    ∴∠2=∠ACD=70°,
    故选:C.
    【点睛】
    本题考查了等腰三角形的性质,平行线的性质,是基础题.
    7、A
    【解析】
    【分析】根据三视图的知识使用排除法即可求得答案.
    【详解】如图,由主视图为三角形,排除了B、D,
    由俯视图为长方形,可排除C,
    故选A.
    【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.
    8、B
    【解析】
    根据平行线的性质可得到两组对应角相等,易得解题步骤;
    【详解】
    证明:,

    又,

    ∽.
    故选B.
    【点睛】
    本题考查了相似三角形的判定与性质;关键是证明三角形相似.
    9、C
    【解析】
    解:A.2a与2不是同类项,不能合并,故本选项错误;
    B.应为,故本选项错误;
    C.,正确;
    D.应为,故本选项错误.
    故选C.
    【点睛】
    本题考查幂的乘方与积的乘方;同底数幂的乘法.
    10、D
    【解析】
    ①根据作图的过程可知,AD是∠BAC的平分线.故①正确.
    ②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.
    又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,
    ∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.
    ③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.
    ④∵如图,在直角△ACD中,∠2=10°,∴CD=AD.
    ∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.
    ∴S△ABC=AC•BC=AC•AD=AC•AD.
    ∴S△DAC:S△ABC.故④正确.
    综上所述,正确的结论是:①②③④,,共有4个.故选D.
    11、C
    【解析】
    从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.
    【详解】
    解:①小明家距学校4千米,正确;
    ②小明上学所用的时间为12分钟,正确;
    ③小明上坡的速度是千米/分钟,错误;
    ④小明放学回家所用时间为3+2+10=15分钟,正确;
    故选:C.
    【点睛】
    本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
    12、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、四
    【解析】
    任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:设边数为n,根据题意,得
    (n-2)•180=360,
    解得n=4,则它是四边形.
    故填:四.
    【点睛】
    此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
    14、8
    【解析】
    根据题意作出图形即可得出答案,
    【详解】
    如图,AD>AB,△CDE1,△ABE2,△ABE3,△BCE4,△CDE5,△ABE6,△ADE7,△CDE8,为等腰三角形,故有8个满足题意得点.
    【点睛】
    此题主要考查矩形的对称性,解题的关键是根据题意作出图形.
    15、1+
    【解析】
    试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
    过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
    解:连接AB,则AB为⊙M的直径.
    Rt△ABO中,∠BAO=∠OCB=60°,
    ∴OB=OA=×=.
    过B作BD⊥OC于D.
    Rt△OBD中,∠COB=45°,
    则OD=BD=OB=.
    Rt△BCD中,∠OCB=60°,
    则CD=BD=1.
    ∴OC=CD+OD=1+.
    故答案为1+.
    点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
    16、.
    【解析】
    由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可.
    【详解】
    解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,
    所以恰好选到经过西流湾大桥的路线的概率=.
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    17、或
    【解析】
    分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解.
    【详解】
    当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:
    点的坐标为,B点的坐标为,
    点的坐标为;
    当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:
    点的坐标为,B点的坐标为,
    点的坐标为.
    综上所述:这个旋转中心的坐标为或.
    故答案为或.
    【点睛】
    本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键.
    18、50°
    【解析】
    延长BF交CD于G,根据折叠的性质和平行四边形的性质,证明△BCG≌△DAE,从而∠7=∠6=25°,进而可求∠FDA得度数.
    【详解】
    延长BF交CD于G
    由折叠知,
    BE=CF, ∠1=∠2, ∠7=∠8,
    ∴∠3=∠4.
    ∵∠1+∠2=∠3+∠4,
    ∴∠1=∠2=∠3=∠4,
    ∵CD∥AB,
    ∴∠3=∠5,
    ∴∠1=∠5,
    在△BCG和△DAE中
    ∵∠1=∠5,
    ∠C=∠A,
    BC=AD,
    ∴△BCG≌△DAE,
    ∴∠7=∠6=25°,
    ∴∠8=∠7=25°,
    ∴FDA=50°.
    故答案为50°.
    【点睛】
    本题考查了折叠的性质,平行四边形的性质,全等三角形的判定与性质. 证明△BCG≌△DAE是解答本题的关键.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析(2)-1
    【解析】
    (1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
    (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
    【详解】
    (1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
    ∴AE=AB,AF=AC,∠EAF=∠BAC,
    ∴∠EAF+∠BAF=∠BAC+∠BAF,
    即∠EAB=∠FAC,
    在△ACF和△ABE中,
    △ACF≌△ABE
    BE=CF.
    (2)∵四边形ACDE为菱形,AB=AC=1,
    ∴DE=AE=AC=AB=1,AC∥DE,
    ∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
    ∴∠AEB=∠ABE=45°,
    ∴△ABE为等腰直角三角形,
    ∴BE=AC=,
    ∴BD=BE﹣DE=.
    考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
    20、(1)y=-x2+2x+1;(2)-m2+1m.(1)2.
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;
    (1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.
    【详解】
    解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,
    ∴,解得,
    此抛物线所对应的函数表达式y=-x2+2x+1;
    (2)∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴C(0,1).
    设BC所在的直线的函数解析式为y=kx+b,将B、C点的坐标代入函数解析式,得
    ,解得,
    即BC的函数解析式为y=-x+1.
    由P在BC上,F在抛物线上,得
    P(m,-m+1),F(m,-m2+2m+1).
    PF=-m2+2m+1-(-m+1)=-m2+1m.
    (1)如图

    ∵此抛物线所对应的函数表达式y=-x2+2x+1,
    ∴D(1,4).
    ∵线段BC与抛物线的对称轴交于点E,
    当x=1时,y=-x+1=2,
    ∴E(1,2),
    ∴DE=4-2=2.
    由四边形PEDF为平行四边形,得
    PF=DE,即-m2+1m=2,
    解得m1=1,m2=2.
    当m=1时,线段PF与DE重合,m=1(不符合题意,舍).
    当m=2时,四边形PEDF为平行四边形.
    考点:二次函数综合题.
    21、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
    【解析】
    (1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
    【详解】
    (1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);
    (2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
    故答案为(1)(2,-2);(2)(1,0)
    【点睛】
    此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
    22、(1)y=﹣x2+x+1;(2)①-;②点P的坐标(6,﹣14)(4,﹣5);(3).
    【解析】
    (1)根据待定系数法,可得函数解析式;
    (2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;
    (3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值
    【详解】
    解:(1)将A,B点坐标代入,得

    解得,
    抛物线的解析式为y=;
    (2)①由直线y=2x﹣1与直线y=mx+2互相垂直,得
    2m=﹣1,
    即m=﹣;
    故答案为﹣;
    ②AB的解析式为
    当PA⊥AB时,PA的解析式为y=﹣2x﹣2,
    联立PA与抛物线,得,
    解得(舍),,
    即P(6,﹣14);
    当PB⊥AB时,PB的解析式为y=﹣2x+3,
    联立PB与抛物线,得,
    解得(舍),
    即P(4,﹣5),
    综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);
    (3)如图:

    ∵M(t,﹣t2+t+1),Q(t, t+),
    ∴MQ=﹣t2+
    S△MAB=MQ|xB﹣xA|
    =(﹣t2+)×2
    =﹣t2+,
    当t=0时,S取最大值,即M(0,1).
    由勾股定理,得
    AB==,
    设M到AB的距离为h,由三角形的面积,得
    h==.
    点M到直线AB的距离的最大值是.
    【点睛】
    本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键
    23、 (1)4元/瓶.(2) 销售单价至少为1元/瓶.
    【解析】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
    【详解】
    (1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,
    依题意,得:=3×,
    解得:x=4,
    经检验,x=4是原方程的解,且符合题意.
    答:第一批饮料进货单价是4元/瓶;
    (2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.
    设销售单价为y元/瓶,
    依题意,得:(450+1350)y﹣1800﹣8100≥2100,
    解得:y≥1.
    答:销售单价至少为1元/瓶.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
    24、见解析
    【解析】
    据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
    【详解】
    证明:∵∠1=∠2,
    ∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
    ∵在△ABC和△AED中,
    ∴△ABC≌△AED(AAS).
    【点睛】
    此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
    25、(1)∠EPF=120°;(2)AE+AF=6.
    【解析】
    试题分析: (1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证.
    试题解析:
    (1)如图1,过点P作PG⊥EF于G,
    ∵PE=PF,
    ∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
    在△FPG中,sin∠FPG= ,
    ∴∠FPG=60°,
    ∴∠EPF=2∠FPG=120°;
    (2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
    ∵四边形ABCD是菱形,
    ∴AD=AB,DC=BC,
    ∴∠DAC=∠BAC,
    ∴PM=PN,
    在Rt△PME于Rt△PNF中,

    ∴Rt△PME≌Rt△PNF,
    ∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM= ∠DAB=30°,
    ∴AM=AP•cs30°=3 ,同理AN=3 ,
    ∴AE+AF=(AM-EM)+(AN+NF)=6.
    【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.
    26、(1)见解析;(2).
    【解析】
    (1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
    (2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
    【详解】
    (1)证明:∵,
    ∴.
    ∴∠GAB=∠B,
    ∵AF是⊙O的切线,
    ∴AF⊥AO.
    ∴∠GAB+∠GAF=90°.
    ∵OE⊥AC,
    ∴∠F+∠GAF=90°.
    ∴∠F=∠GAB,
    ∴∠F=∠B;
    (2)解:连接OG.
    ∵∠GAB=∠B,
    ∴AG=BG.
    ∵OA=OB=6,
    ∴OG⊥AB.
    ∴,
    ∵∠FAO=∠BOG=90°,∠F=∠B,
    ∴△FAO∽△BOG,
    ∴.
    ∴.
    【点睛】
    本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
    27、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.
    【解析】
    (1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;
    (2)构建方程即可解决问题;
    (3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.
    【详解】
    (1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.
    (2)由题意:20=﹣x2+32x﹣2.
    解得:x=16,
    答:该产品第一年的售价是16元.
    (3)由题意:7≤x≤16,
    W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,
    ∵7≤x≤16,
    ∴x=7时,W2有最小值,最小值=18(万元),
    答:该公司第二年的利润W2至少为18万元.
    【点睛】
    本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.


    平均数
    8
    8
    方差
    1.2
    1.8
    相关试卷

    山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列图形中,是轴对称图形的是,下列事件中必然发生的事件是等内容,欢迎下载使用。

    山东省临沂市蒙阴县重点中学2021-2022学年中考联考数学试题含解析: 这是一份山东省临沂市蒙阴县重点中学2021-2022学年中考联考数学试题含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022年兴安市重点中学中考数学模拟精编试卷含解析: 这是一份2022年兴安市重点中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列等式正确的是,关于的方程有实数根,则满足等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map