终身会员
搜索
    上传资料 赚现金
    2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析
    立即下载
    加入资料篮
    2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析01
    2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析02
    2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析

    展开
    这是一份2022届山东省济宁市梁山县实验中学中考试题猜想数学试卷含解析,共20页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列实数中,无理数是(  )
    A.3.14 B.1.01001 C. D.
    2.3点40分,时钟的时针与分针的夹角为(  )
    A.140° B.130° C.120° D.110°
    3.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    4.下列各式计算正确的是( )
    A.a2+2a3=3a5 B.a•a2=a3 C.a6÷a2=a3 D.(a2)3=a5
    5.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )
    A.20% B.11% C.10% D.9.5%
    6.已知关于的方程,下列说法正确的是
    A.当时,方程无解
    B.当时,方程有一个实数解
    C.当时,方程有两个相等的实数解
    D.当时,方程总有两个不相等的实数解
    7.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的(  )
    A.中位数 B.众数 C.平均数 D.方差
    8.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )

    A.① B.② C.③ D.④
    9.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是(  )
    A. B.
    C. D.
    10.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是(  )

    A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570
    C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.定义一种新运算:x*y=,如2*1==3,则(4*2)*(﹣1)=_____.
    12.分解因式:=__________________.
    13.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.

    14.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
    15.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.

    16.已知:a(a+2)=1,则a2+ =_____.
    三、解答题(共8题,共72分)
    17.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
    (1)求y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    18.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)

    19.(8分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?
    20.(8分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m=   ,n=   ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
    21.(8分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
    ∵ ∴
          
    (思考)在上述问题中,h1,h1与h的数量关系为: .
    (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
    (应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
    22.(10分)已知:如图,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,⊙P与x轴的另一交点为N,点M在⊙P上,且满足∠MPN=60°.⊙P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:
    (发现)(1)的长度为多少;
    (2)当t=2s时,求扇形MPN(阴影部分)与Rt△ABO重叠部分的面积.
    (探究)当⊙P和△ABO的边所在的直线相切时,求点P的坐标.
    (拓展)当与Rt△ABO的边有两个交点时,请你直接写出t的取值范围.

    23.(12分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
    例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.

    (1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是  .
    (2)当t=时,原函数为y=x2﹣2x
    ①图象G所对应的函数值y随x的增大而减小时,x的取值范围是  .
    ②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
    (3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
    ①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
    ②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
    24.(1)计算:;
    (2)化简,然后选一个合适的数代入求值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    先把能化简的数化简,然后根据无理数的定义逐一判断即可得.
    【详解】
    A、3.14是有理数;
    B、1.01001是有理数;
    C、是无理数;
    D、是分数,为有理数;
    故选C.
    【点睛】
    本题主要考查无理数的定义,属于简单题.
    2、B
    【解析】
    根据时针与分针相距的份数乘以每份的度数,可得答案.
    【详解】
    解:3点40分时针与分针相距4+=份,
    30°×=130,
    故选B.
    【点睛】
    本题考查了钟面角,确定时针与分针相距的份数是解题关键.
    3、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    4、B
    【解析】
    根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解
    【详解】
    A.a2与2a3不是同类项,故A不正确;
    B.a•a2=a3,正确;
    C.原式=a4,故C不正确;
    D.原式=a6,故D不正确;
    故选:B.
    【点睛】
    此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则.
    5、C
    【解析】
    设二,三月份平均每月降价的百分率为,则二月份为,三月份为,然后再依据第三个月售价为1,列出方程求解即可.
    【详解】
    解:设二,三月份平均每月降价的百分率为.
    根据题意,得=1.
    解得,(不合题意,舍去).
    答:二,三月份平均每月降价的百分率为10%
    【点睛】
    本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a,每次降价的百分率为a,则第一次降价后为a(1-x);第二次降价后后为a(1-x)2,即:原数x(1-降价的百分率)2=后两次数.
    6、C
    【解析】
    当时,方程为一元一次方程有唯一解.
    当时,方程为一元二次方程,的情况由根的判别式确定:
    ∵,
    ∴当时,方程有两个相等的实数解,当且时,方程有两个不相等的实数解.综上所述,说法C正确.故选C.
    7、A
    【解析】
    7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
    故选A.
    【点睛】
    本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
    8、B
    【解析】
    根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑②时,所形成的图形关于点A中心对称。故选B。

    9、B
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解即可.
    详解:A.是轴对称图形,不是中心对称图形;
    B.是轴对称图形,也是中心对称图形;
    C.是轴对称图形,不是中心对称图形;
    D.是轴对称图形,不是中心对称图形.
    故选B.
    点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
    10、A
    【解析】
    六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,
    故选A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    利用题中的新定义计算即可求出值.
    【详解】
    解:根据题中的新定义得:原式=*(﹣1)=3*(﹣1)==﹣1.
    故答案为﹣1.
    【点睛】
    本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
    12、
    【解析】
    原式提取2,再利用完全平方公式分解即可.
    【详解】
    原式
    【点睛】
    先考虑提公因式法,再用公式法进行分解,最后考虑十字相乘,差项补项等方法.
    13、3
    【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.
    考点:(1)、直角三角形的性质;(2)、中位线的性质
    14、>
    【解析】
    分别根据方差公式计算出甲、乙两人的方差,再比较大小.
    【详解】
    ∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
    故答案为:>.
    【点睛】
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    15、同位角相等,两直线平行.
    【解析】
    试题解析:利用三角板中两个60°相等,可判定平行
    考点:平行线的判定
    16、3
    【解析】
    先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行计算.
    【详解】
    a(a+2)=1得出a2=1-2a,
    a2+1-2a+= ===3.
    【点睛】
    本题考查的是代数式求解,熟练掌握代入法是解题的关键.

    三、解答题(共8题,共72分)
    17、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【解析】
    根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
    【详解】
    (1).
    (2) 根据题意,得:


    ∴当时,随x的增大而增大

    ∴当时,取得最大值,最大值是144
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【点睛】
    熟悉掌握图中所给信息以及列方程组是解决本题的关键.
    18、(70﹣10)m.
    【解析】
    过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则
    【详解】
    如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.

    则DE=BF=CH=10m,
    在中,∵AF=80m−10m=70m,
    ∴DF=AF=70m.
    在中,∵DE=10m,


    答:障碍物B,C两点间的距离为
    19、今年的总收入为220万元,总支出为1万元.
    【解析】
    试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.
    试题解析:
    设去年的总收入为x万元,总支出为y万元.
    根据题意,得,
    解这个方程组,得,
    ∴(1+10%)x=220,(1-20%)y=1.
    答:今年的总收入为220万元,总支出为1万元.
    20、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
    【解析】
    【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
    (2)在(1)的基础上分段表示利润,讨论最值;
    (3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
    【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
    32=12m﹣76m,
    解得m=,
    当第26天的售价为25元/千克时,代入y=n,
    则n=25,
    故答案为m=,n=25;
    (2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
    当1≤x<20时,
    W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
    ∴当x=18时,W最大=968,
    当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
    ∵28>0,
    ∴W随x的增大而增大,
    ∴当x=30时,W最大=952,
    ∵968>952,
    ∴当x=18时,W最大=968;
    (3)当1≤x<20时,令﹣2x2+72x+320=870,
    解得x1=25,x2=11,
    ∵抛物线W=﹣2x2+72x+320的开口向下,
    ∴11≤x≤25时,W≥870,
    ∴11≤x<20,
    ∵x为正整数,
    ∴有9天利润不低于870元,
    当20≤x≤30时,令28x+112≥870,
    解得x≥27,
    ∴27≤x≤30
    ∵x为正整数,
    ∴有3天利润不低于870元,
    ∴综上所述,当天利润不低于870元的天数共有12天.
    【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
    21、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
    【解析】
    思考:根据等腰三角形的性质,把代数式化简可得.
    探究:当点M在BC延长线上时,连接,可得,化简可得.
    应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
    【详解】
    思考



    h1+h1=h.
    探究
    h1-h1=h.
    理由.连接,


    ∴h1-h1=h.
    应用
    在中,令x=0得y=3;
    令y=0得x=-4,则:
    A(-4,0),B(0,3)
    同理求得C(1,0),

    又因为AC=5,
    所以AB=AC,即△ABC为等腰三角形.
    ①当点M在BC边上时,
    由h1+h1=h得:
    1+My=OB,My=3-1=1,
    把它代入y=-3x+3中求得:

    ∴;
    ②当点M在CB延长线上时,
    由h1-h1=h得:
    My-1=OB,My=3+1=4,
    把它代入y=-3x+3中求得:

    ∴,
    综上,所求点M的坐标为或.
    【点睛】
    本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
    22、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析.
    【解析】
    发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;
    (2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;
    探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;
    拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论.
    【详解】
    [发现]
    (3)∵P(2,0),∴OP=2.
    ∵OA=3,∴AP=3,∴的长度为.
    故答案为;
    (2)设⊙P半径为r,则有r=2﹣3=3,当t=2时,如图3,点N与点A重合,∴PA=r=3,设MP与AB相交于点Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.
    ∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重叠部分=S△APQPQ×AQ.
    即重叠部分的面积为.
    [探究]
    ①如图2,当⊙P与直线AB相切于点C时,连接PC,则有PC⊥AB,PC=r=3.
    ∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;
    ∴点P的坐标为(3,0);

    ②如图3,当⊙P与直线OB相切于点D时,连接PD,则有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴点P的坐标为(,0);
    ③如图2,当⊙P与直线OB相切于点E时,连接PE,则有PE⊥OB,同②可得:OP;
    ∴点P的坐标为(,0);

    [拓展]
    t的取值范围是2<t≤3,2≤t<4,理由:
    如图4,当点N运动到与点A重合时,与Rt△ABO的边有一个公共点,此时t=2;
    当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t3,与Rt△ABO的边有两个公共点,∴2<t≤3.
    如图6,当⊙P运动到PM与OB重合时,与Rt△ABO的边有两个公共点,此时t=2;
    直到⊙P运动到点N与点O重合时,与Rt△ABO的边有一个公共点,此时t=4;
    ∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.

    【点睛】
    本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.
    23、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
    【解析】
    (1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
    (2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
    (3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
    ②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
    【详解】
    (1)当x=时,y=,
    当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
    翻折后函数的表达式为:y=﹣x+2,
    当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
    同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
    函数与x轴交点坐标为:(0,0),因为所以舍去.
    故答案为:(2,0);
    (2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:

    点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
    则点A、B、C的横坐标分别为﹣、1、,
    ①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
    故答案为:﹣≤x≤1或x≥;
    ②函数在点A处取得最大值,
    x=﹣,y=(﹣)2﹣2×(﹣)=,
    答:图象G所对应的函数有最大值为;
    (3)n=﹣1时,y=x2+2x﹣2,
    ①参考(2)中的图象知:
    当y=2时,y=x2+2x﹣2=2,
    解得:x=﹣1±,
    若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
    所以;
    ②函数的对称轴为:x=n,
    令y=x2﹣2nx+n2﹣3=0,则x=n±,
    当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
    当x=n在y轴左侧时,(n≤0),
    此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,

    则函数在AB段和点C右侧,
    故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
    解得:n≤;
    当x=n在y轴右侧时,(n≥0),
    同理可得:n≥;
    综上:n≤或n≥.
    【点睛】
    在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
    24、(1)0;(2),答案不唯一,只要x≠±1,0即可,当x=10时,.
    【解析】
    (1)根据有理数的乘方法则、零次幂的性质、特殊角的三角函数值计算即可;
    (2)先把括号内通分,再把除法运算化为乘法运算,然后约分,再根据分式有意义的条件把x=10代入计算即可.
    【详解】
    解:(1)原式=
    =1﹣3+2+1﹣1
    =0;
    (2)原式=
    =
    由题意可知,x≠1
    ∴当x=10时,
    原式=
    =.
    【点睛】
    本题考查实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值;分式的化简求值,掌握计算法则正确计算是本题的解题关键.

    相关试卷

    2023年山东省济宁市梁山县中考数学二模试卷(含解析): 这是一份2023年山东省济宁市梁山县中考数学二模试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年山东省济宁市梁山县寿张集中学中考数学模拟试卷(二)(含解析): 这是一份2023年山东省济宁市梁山县寿张集中学中考数学模拟试卷(二)(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年山东省济宁市梁山县实验中学中考数学模试卷含解析: 这是一份2022年山东省济宁市梁山县实验中学中考数学模试卷含解析,共19页。试卷主要包含了下列图形中一定是相似形的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map