搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省济南历下区中考一模数学试题含解析

    2022届山东省济南历下区中考一模数学试题含解析第1页
    2022届山东省济南历下区中考一模数学试题含解析第2页
    2022届山东省济南历下区中考一模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济南历下区中考一模数学试题含解析

    展开

    这是一份2022届山东省济南历下区中考一模数学试题含解析,共18页。试卷主要包含了下列事件是必然事件的是,有下列四种说法等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    2.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )

    A.(1,1) B.(2,1) C.(2,2) D.(3,1)
    3.-4的相反数是( )
    A. B. C.4 D.-4
    4.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    5.将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为(  )
    A.4 B.﹣4 C.2 D.﹣2
    6.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    7.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的(  )
    A.平均数 B.中位数 C.众数 D.方差
    8.下列事件是必然事件的是(  )
    A.任意作一个平行四边形其对角线互相垂直
    B.任意作一个矩形其对角线相等
    C.任意作一个三角形其内角和为
    D.任意作一个菱形其对角线相等且互相垂直平分
    9.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是(  )

    A.25° B.30° C.35° D.55°
    10.有下列四种说法:
    ①半径确定了,圆就确定了;②直径是弦;
    ③弦是直径;④半圆是弧,但弧不一定是半圆.
    其中,错误的说法有(  )
    A.1种 B.2种 C.3种 D.4种
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是   .

    12.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.

    13.二次函数y=x2-2x+1的对称轴方程是x=_______.
    14.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
    15.如图,在每个小正方形的边长为1的网格中,A,B为格点
    (Ⅰ)AB的长等于__
    (Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的__________________

    16.不等式5x﹣3<3x+5的非负整数解是_____.
    17.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
    三、解答题(共7小题,满分69分)
    18.(10分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列各题:
    (1)在这次研究中,一共调查了多少名学生?
    (2)“其他”在扇形统计图中所占的圆心角是多少度?
    (3)补全频数分布直方图;
    (4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读.

    19.(5分)一次函数的图象经过点和点,求一次函数的解析式.
    20.(8分)如图,在四边形中,为的中点,于点,,,,求的度数.

    21.(10分)计算:÷(﹣1)
    22.(10分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
    23.(12分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
    (1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
    (2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.

    24.(14分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒.
    (1)当点 P 经过点 C 时,求直线 DP 的函数解析式;
    (2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.
    (3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    2、B
    【解析】
    直接利用已知点坐标建立平面直角坐标系进而得出答案.
    【详解】
    解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:

    ∴棋子“炮”的坐标为(2,1),
    故答案为:B.
    【点睛】
    本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
    3、C
    【解析】
    根据相反数的定义即可求解.
    【详解】
    -4的相反数是4,故选C.
    【点晴】
    此题主要考查相反数,解题的关键是熟知相反数的定义.
    4、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    5、A
    【解析】
    直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.
    【详解】
    由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,
    把A(3,3)代入,得
    3=-3+b+2,
    解得b=4.
    故选A.
    【点睛】
    本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.
    6、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.
    7、B
    【解析】
    由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
    中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
    名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
    分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
    故选B.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
    映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
    计量进行合理的选择和恰当的运用.
    8、B
    【解析】
    必然事件就是一定发生的事件,根据定义对各个选项进行判断即可.
    【详解】
    解:A、任意作一个平行四边形其对角线互相垂直不一定发生,是随机事件,故本选项错误;
    B、矩形的对角线相等,所以任意作一个矩形其对角线相等一定发生,是必然事件,故本选项正确;
    C、三角形的内角和为180°,所以任意作一个三角形其内角和为是不可能事件,故本选项错误;
    D、任意作一个菱形其对角线相等且互相垂直平分不一定发生,是随机事件,故选项错误,
    故选:B.
    【点睛】
    解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.熟练掌握相关图形的性质也是解题的关键.
    9、C
    【解析】
    根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.
    【详解】
    解:∵直线m∥n,
    ∴∠3=∠1=25°,
    又∵三角板中,∠ABC=60°,
    ∴∠2=60°﹣25°=35°,
    故选C.

    【点睛】
    本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.
    10、B
    【解析】
    根据弦的定义、弧的定义、以及确定圆的条件即可解决.
    【详解】
    解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
    直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
    弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
    ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
    其中错误说法的是①③两个.
    故选B.
    【点睛】
    本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.

    二、填空题(共7小题,每小题3分,满分21分)
    11、10
    【解析】
    由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.
    【详解】

    如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.
    ∵四边形ABCD是正方形,
    ∴B、D关于AC对称,
    ∴PB=PD,
    ∴PB+PE=PD+PE=DE.
    ∵BE=2,AE=3BE,
    ∴AE=6,AB=8,
    ∴DE==10,
    故PB+PE的最小值是10.
    故答案为10.
    12、2
    【解析】
    设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
    【详解】
    设EF=x,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
    ∴BD=AB=4+4,EF=BF=x,
    ∴BE=x,
    ∵∠BAE=22.5°,
    ∴∠DAE=90°-22.5°=67.5°,
    ∴∠AED=180°-45°-67.5°=67.5°,
    ∴∠AED=∠DAE,
    ∴AD=ED,
    ∴BD=BE+ED=x+4+2=4+4,
    解得:x=2,
    即EF=2.
    13、1
    【解析】
    利用公式法可求二次函数y=x2-2x+1的对称轴.也可用配方法.
    【详解】
    ∵-=-=1,
    ∴x=1.
    故答案为:1
    【点睛】
    本题考查二次函数基本性质中的对称轴公式;也可用配方法解决.
    14、﹣1
    【解析】
    根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
    【详解】
    解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
    ∴,
    解得:k=,
    ∴原方程为x1+4x+4=0,即(x+1)1=0,
    解得:x=-1.
    故答案为:-1.
    【点睛】
    本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    15、 取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【解析】
    (Ⅰ)利用勾股定理计算即可;
    (Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【详解】
    解:(Ⅰ)AB= =,
    故答案为.
    (Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

    故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【点睛】
    本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.
    16、0,1,2,1
    【解析】
    5x﹣1<1x+5,
    移项得,5x﹣1x<5+1,
    合并同类项得,2x<8,
    系数化为1得,x<4
    所以不等式的非负整数解为0,1,2,1;
    故答案为0,1,2,1.
    【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.
    17、.
    【解析】
    试题分析:画树状图为:

    共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
    考点:列表法与树状图法.

    三、解答题(共7小题,满分69分)
    18、(1)总调查人数是100人;(2)在扇形统计图中“其它”类的圆心角是36°;(3)补全频数分布直方图见解析;(4)估计一下全校课余爱好是阅读的学生约为960人.
    【解析】
    (1)利用参加运动的人数除以其所占的比例即可求得这次调查的总人数;(2)用360°乘以“其它”类的人数所占的百分比即可求解;(3)求得“其它”类的人数、“娱乐”类的人数,补全统计图即可;(4)用总人数乘以课余爱好是阅读的学生人数所占的百分比即可求解.
    【详解】
    (1)从条形统计图中得出参加运动的人数为20人,所占的比例为20%,
    ∴总调查人数=20÷20%=100人;
    (2)参加娱乐的人数=100×40%=40人,
    从条形统计图中得出参加阅读的人数为30人,
    ∴“其它”类的人数=100﹣40﹣30﹣20=10人,所占比例=10÷100=10%,
    在扇形统计图中“其它”类的圆心角=360×10%=36°;
    (3)如图

    (4)估计一下全校课余爱好是阅读的学生约为3200×=960(人).
    【点睛】
    本题考查了条形统计图、扇形统计图的应用,从条形统计图、扇形统计图中获取必要的信息是解决问题的关键.
    19、y=2x+1.
    【解析】
    直接把点A(﹣1,1),B(1,5)代入一次函数y=kx+b(k≠0),求出k、b的值即可.
    【详解】
    ∵一次函数y=kx+b(k≠0)的图象经过点A(﹣1,1)和点B(1,5),∴,解得:.
    故一次函数的解析式为y=2x+1.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.
    20、
    【解析】
    连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可.
    【详解】
    连接,
    ∵为的中点,于点,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    21、
    【解析】
    根据分式的混合运算法则把原式进行化简即可.
    【详解】
    原式=÷(﹣)

    =•
    =.
    【点睛】
    本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
    22、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
    【解析】
    (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
    (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
    (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
    【详解】
    解:(1)yB=-0.2x2+1.6x,
    (2)一次函数,yA=0.4x,
    (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
    ∴当x=3时,W最大值=7.8,
    答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
    23、(1)证明见解析;(1)2
    【解析】
    分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
    (1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
    详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
    ∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
    ∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
    (1)∵BE=1,∴BC=4,由勾股定理得:AB===2.

    点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
    24、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    【解析】
    分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
    (2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
    ②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
    (3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
    详解:(1)如图1,

    ∵OA=6,OB=1,四边形OACB为长方形,
    ∴C(6,1).
    设此时直线DP解析式为y=kx+b,
    把(0,2),C(6,1)分别代入,得
    ,解得
    则此时直线DP解析式为y=x+2;
    (2)①当点P在线段AC上时,OD=2,高为6,S=6;
    当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
    ②设P(m,1),则PB=PB′=m,如图2,

    ∵OB′=OB=1,OA=6,
    ∴AB′==8,
    ∴B′C=1﹣8=2,
    ∵PC=6﹣m,
    ∴m2=22+(6﹣m)2,解得m=
    则此时点P的坐标是(,1);
    (3)存在,理由为:
    若△BDP为等腰三角形,分三种情况考虑:如图3,

    ①当BD=BP1=OB﹣OD=1﹣2=8,
    在Rt△BCP1中,BP1=8,BC=6,
    根据勾股定理得:CP1==2,
    ∴AP1=1﹣2,即P1(6,1﹣2);
    ②当BP2=DP2时,此时P2(6,6);
    ③当DB=DP3=8时,
    在Rt△DEP3中,DE=6,
    根据勾股定理得:P3E==2,
    ∴AP3=AE+EP3=2+2,即P3(6,2+2),
    综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
    点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.

    相关试卷

    2024年山东省济南市历下区中考数学一模试卷(含解析):

    这是一份2024年山东省济南市历下区中考数学一模试卷(含解析),共37页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省济南市历下区中考数学一模试卷(含解析):

    这是一份2024年山东省济南市历下区中考数学一模试卷(含解析),共37页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省济南市历下区中考数学三模试卷(含解析):

    这是一份2023年山东省济南市历下区中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map