年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省临沂市中考押题数学预测卷含解析

    2022届山东省临沂市中考押题数学预测卷含解析第1页
    2022届山东省临沂市中考押题数学预测卷含解析第2页
    2022届山东省临沂市中考押题数学预测卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临沂市中考押题数学预测卷含解析

    展开

    这是一份2022届山东省临沂市中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,下列各数中最小的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m,此时距喷水管的水平距离为 1 m,在如图 2 所示的坐标系中,该喷水管水流喷出的高度(m)与水平距离(m)之间的函数关系式是( )

    A. B.
    C. D.
    2.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是(  )

    A.相切 B.相交 C.相离 D.无法确定
    3.下列判断正确的是(  )
    A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
    B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
    C.“篮球队员在罚球线上投篮一次,投中”为随机事件
    D.“a是实数,|a|≥0”是不可能事件
    4.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为(  )

    A.3 B.4﹣ C.4 D.6﹣2
    5.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )

    A.50° B.110° C.130° D.150°
    6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为

    A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
    7.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
    ①若C,O两点关于AB对称,则OA=;
    ②C,O两点距离的最大值为4;
    ③若AB平分CO,则AB⊥CO;
    ④斜边AB的中点D运动路径的长为π.
    其中正确的是(  )

    A.①② B.①②③ C.①③④ D.①②④
    8.下列运算正确的是(  )
    A. B. =﹣3 C.a•a2=a2 D.(2a3)2=4a6
    9.下列各数中最小的是( )
    A.0 B.1 C.﹣ D.﹣π
    10.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(   )

    A.35° B.45° C.55° D.65°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.

    12.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    13.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC的顶点_____重合.

    14.如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为_____

    15.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.

    16.计算:2a×(﹣2b)=_____.
    三、解答题(共8题,共72分)
    17.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.

    18.(8分)﹣(﹣1)2018+﹣()﹣1
    19.(8分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
    20.(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,

    (1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;
    (2)如图,当点B为的中点时,求点A、D之间的距离:
    (3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长.
    21.(8分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?
    22.(10分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    23.(12分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
    24.为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
    组别
    分数段
    频次
    频率
    A
    60≤x<70
    17
    0.17
    B
     70≤x<80
     30
     a
    C
     80≤x<90
     b
     0.45
    D
     90≤x<100
     8
     0.08
    请根据所给信息,解答以下问题:
    (1)表中a=______,b=______;
    (2)请计算扇形统计图中B组对应扇形的圆心角的度数;
    (3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据图象可设二次函数的顶点式,再将点(0,0)代入即可.
    【详解】
    解:根据图象,设函数解析式为
    由图象可知,顶点为(1,3)
    ∴,
    将点(0,0)代入得
    解得

    故答案为:D.
    【点睛】
    本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.
    2、B
    【解析】
    首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.
    【详解】
    解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.
    ∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.
    ∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.
    故选B.

    【点睛】
    本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.
    3、C
    【解析】
    直接利用概率的意义以及随机事件的定义分别分析得出答案.
    【详解】
    A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
    B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
    C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
    D、“a是实数,|a|≥0”是必然事件,故此选项错误.
    故选C.
    【点睛】
    此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
    4、B
    【解析】
    分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
    详解:如图,当点E旋转至y轴上时DE最小;

    ∵△ABC是等边三角形,D为BC的中点,
    ∴AD⊥BC
    ∵AB=BC=2
    ∴AD=AB•sin∠B=,
    ∵正六边形的边长等于其半径,正六边形的边长为2,
    ∴OE=OE′=2
    ∵点A的坐标为(0,6)
    ∴OA=6
    ∴DE′=OA-AD-OE′=4-
    故选B.
    点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
    5、C
    【解析】
    如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
    【详解】
    ∵EF∥GH,∴∠FCD=∠2,
    ∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
    ∴∠2=∠FCD=130°,
    故选C.

    【点睛】
    本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.
    6、B
    【解析】
    试题分析:根据作图方法可得点P在第二象限角平分线上,
    则P点横纵坐标的和为0,即2a+b+1=0,
    ∴2a+b=﹣1.故选B.
    7、D
    【解析】
    分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
    ②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
    ③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
    ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
    详解:在Rt△ABC中,∵


    ①若C.O两点关于AB对称,如图1,
    ∴AB是OC的垂直平分线,

    所以①正确;
    ②如图1,取AB的中点为E,连接OE、CE,


    当OC经过点E时,OC最大,
    则C.O两点距离的最大值为4;
    所以②正确;
    ③如图2,当时,

    ∴四边形AOBC是矩形,
    ∴AB与OC互相平分,
    但AB与OC的夹角为不垂直,
    所以③不正确;
    ④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的

    则:
    所以④正确;
    综上所述,本题正确的有:①②④;
    故选D.
    点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
    8、D
    【解析】
    试题解析:A. 与不是同类二次根式,不能合并,故该选项错误;
    B.,故原选项错误;
    C. ,故原选项错误;
    D. ,故该选项正确.
    故选D.
    9、D
    【解析】
    根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.
    【详解】
    ﹣π<﹣<0<1.
    则最小的数是﹣π.
    故选:D.
    【点睛】
    本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.
    10、C
    【解析】
    分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
    详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
    ∴∠B=∠ADC=35°,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°-∠B=55°,
    故选C.
    点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
    【详解】
    正△A1B1C1的面积是,
    而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    则面积的比是,则正△A2B2C2的面积是×;
    因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
    依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
    所以第8个正△A8B8C8的面积是×()7=.
    故答案为.
    【点睛】
    本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
    12、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    13、﹣1 C.
    【解析】
    ∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,
    ∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);
    ∴﹣1x=9,
    x=﹣1.
    故A表示的数为:x﹣1=﹣1﹣1=﹣6,
    点B表示的数为:2x+1=2×(﹣1)+1=﹣5,
    即等边三角形ABC边长为1,
    数字2012对应的点与﹣4的距离为:2012+4=2016,
    ∵2016÷1=672,C从出发到2012点滚动672周,
    ∴数字2012对应的点将与△ABC的顶点C重合.
    故答案为﹣1,C.
    点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.
    14、115°
    【解析】
    根据三角形的内角和得到∠BAC+∠ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到结论.
    【详解】
    ∵∠ABC=50°,
    ∴∠BAC+∠ACB=130°,
    ∵若M在PA的中垂线上,N在PC的中垂线上,
    ∴AM=PM,PN=CN,
    ∴∠MAP=∠APM,∠CPN=∠PCN,
    ∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,
    ∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,
    ∴∠APC=115°,
    故答案为:115°
    【点睛】
    本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.
    15、
    【解析】
    试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.
    16、﹣4ab
    【解析】
    根据单项式与单项式的乘法解答即可.
    【详解】
    2a×(﹣2b)=﹣4ab.
    故答案为﹣4ab.
    【点睛】
    本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.

    三、解答题(共8题,共72分)
    17、 (8+8)m.
    【解析】
    利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
    【详解】
    在Rt△EBC中,有BE=EC×tan45°=8m,
    在Rt△AEC中,有AE=EC×tan30°=8m,
    ∴AB=8+8(m).
    【点睛】
    本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
    18、-1.
    【解析】
    直接利用负指数幂的性质以及算术平方根的性质分别化简得出答案.
    【详解】
    原式=﹣1+1﹣3
    =﹣1.
    【点睛】
    本题主要考查了实数运算,正确化简各数是解题的关键.
    19、
    【解析】
    先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
    【详解】
    解:原式


    【点睛】
    考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
    20、(1);(2);(3)
    【解析】
    (1)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOC等于30°,OA=OC可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD的值.
    (2)连接OB、OC,可证△OBC是等边三角形,根据垂径定理可得∠DOB等于30°,因为点D为BC的中点,则∠AOB=∠BOC=60°,所以∠AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.
    (3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.
    【详解】
    (1)如图1:连接OB、OC.
    ∵BC=AO
    ∴OB=OC=BC
    ∴△OBC是等边三角形
    ∴∠BOC=60°
    ∵点D是BC的中点
    ∴∠BOD=
    ∵OA=OC
    ∴=α
    ∴∠AOD=180°-α-α-=150°-2α

    (2)如图2:连接OB、OC、OD.
    由(1)可得:△OBC是等边三角形,∠BOD=
    ∵OB=2,
    ∴OD=OB∙cos=
    ∵B为的中点,
    ∴∠AOB=∠BOC=60°
    ∴∠AOD=90°
    根据勾股定理得:AD=

    (3)①如图3.圆O与圆D相内切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    设AF=x
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    ②如图4.圆O与圆D相外切时:
    连接OB、OC,过O点作OF⊥AE
    ∵BC是直径,D是BC的中点
    ∴以BC为直径的圆的圆心为D点
    由(2)可得:OD=,圆D的半径为1
    ∴AD=
    在Rt△AFO和Rt△DOF中,


    解得:
    ∴AE=

    【点睛】
    本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.
    21、客房8间,房客63人
    【解析】
    设该店有间客房,以人数相等为等量关系列出方程即可.
    【详解】
    设该店有间客房,则

    解得

    答:该店有客房8间,房客63人.
    【点睛】
    本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.
    22、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    23、
    【解析】
    设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
    【详解】
    解:设灯柱的长为米,过点作于点过点做于点

    ∴四边形为矩形,
    ∵∴
    又∵∴
    在中,


    ∴又∴
    在中,

    解得,(米)
    ∴灯柱的高为米.
    24、(1)0.3 ,45;(2)108°;(3).
    【解析】
    (1)首先根据A组频数及其频率可得总人数,再利用频数、频率之间的关系求得a、b;
    (2)B组的频率乘以360°即可求得答案;
    (2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;
    【详解】
    (1)本次调查的总人数为17÷0.17=100(人),则a==0.3,b=100×0.45=45(人).
    故答案为0.3,45;
    (2)360°×0.3=108°.
    答:扇形统计图中B组对应扇形的圆心角为108°.
    (3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:

    ∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为=.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

    相关试卷

    2022届山东省乐陵市中考押题数学预测卷含解析:

    这是一份2022届山东省乐陵市中考押题数学预测卷含解析,共22页。试卷主要包含了计算-3-1的结果是等内容,欢迎下载使用。

    2021-2022学年山东省巨野县中考押题数学预测卷含解析:

    这是一份2021-2022学年山东省巨野县中考押题数学预测卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,某反比例函数的图象经过点等内容,欢迎下载使用。

    2021-2022学年山东省青岛市中考押题数学预测卷含解析:

    这是一份2021-2022学年山东省青岛市中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列二次根式,最简二次根式是,下列运算正确的是,的倒数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map