终身会员
搜索
    上传资料 赚现金

    2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析第1页
    2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析第2页
    2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析

    展开

    这是一份2022届山东省牡丹区王浩屯镇初级中学中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,若x>y,则下列式子错误的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    2.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是(  )

    A.4 B.1 C.2 D.3
    3.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
    A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
    4.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为(  )
    A.米 B.米 C.米 D.米
    5.一元二次方程x2-2x=0的解是( )
    A.x1=0,x2=2 B.x1=1,x2=2 C.x1=0,x2=-2 D.x1=1,x2=-2
    6.下列图形中,既是中心对称图形,又是轴对称图形的是( )
    A. B. C. D.
    7.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    8.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=(  )

    A.20° B.35° C.15° D.45°
    9.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是  
    A. B. C. D.
    10.若x>y,则下列式子错误的是( )
    A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.
    11.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是(  )

    A.5 B.9 C.15 D.22
    12.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为(  )DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4).

    A.1 B.2 C.3 D.4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算(-2)×3+(-3)=_______________.
    14.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.

    15.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.
    16.已知a+=2,求a2+=_____.
    17.如果a2﹣b2=8,且a+b=4,那么a﹣b的值是__.
    18.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
    20.(6分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.

    21.(6分)如图,在四边形中,为的中点,于点,,,,求的度数.

    22.(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.

    23.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.
    求AP,BP的长(参考数据:≈1.4,≈1.7,≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?
    24.(10分)周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.
    (1)求a、b的值.
    (2)求甲追上乙时,距学校的路程.
    (3)当两人相距500米时,直接写出t的值是 .

    25.(10分)计算:sin30°•tan60°+..
    26.(12分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,≈2.73

    27.(12分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
    (1)求∠AEC的度数;
    (2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、D
    【解析】
    根据垂径定理,圆周角的性质定理即可作出判断.
    【详解】
    ∵P是弦AB的中点,CD是过点P的直径.
    ∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
    ∠AOB=2∠AOD=4∠ACD,故②正确.
    P是OD上的任意一点,因而④不一定正确.
    故正确的是:①②③.
    故选:D.
    【点睛】
    本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
    3、D
    【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    详解:将数据重新排列为17、18、18、20、20、20、23,
    所以这组数据的众数为20分、中位数为20分,
    故选:D.
    点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    4、C
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    35000纳米=35000×10-9米=3.5×10-5米.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    5、A
    【解析】
    试题分析:原方程变形为:x(x-1)=0
    x1=0,x1=1.
    故选A.
    考点:解一元二次方程-因式分解法.
    6、C
    【解析】
    根据中心对称图形和轴对称图形对各选项分析判断即可得解.
    【详解】
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、不是中心对称图形,是轴对称图形,故本选项错误;
    C、既是中心对称图形,又是轴对称图形,故本选项正确;
    D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    8、A
    【解析】
    根据∠ABD=35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得∠DBC
    【详解】
    解:∵∠ABD=35°,
    ∴的度数都是70°,
    ∵BD为直径,
    ∴的度数是180°﹣70°=110°,
    ∵点A为弧BDC的中点,
    ∴的度数也是110°,
    ∴的度数是110°+110°﹣180°=40°,
    ∴∠DBC==20°,
    故选:A.
    【点睛】
    本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.
    9、A
    【解析】
    根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
    【详解】
    ∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
    ∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
    ∴m<,
    故选A.
    【点睛】
    本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    10、B
    【解析】
    根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:
    A、不等式两边都减3,不等号的方向不变,正确;
    B、乘以一个负数,不等号的方向改变,错误;
    C、不等式两边都加3,不等号的方向不变,正确;
    D、不等式两边都除以一个正数,不等号的方向不变,正确.
    故选B.
    11、B
    【解析】
    条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
    【详解】
    课外书总人数:6÷25%=24(人),
    看5册的人数:24﹣5﹣6﹣4=9(人),
    故选B.
    【点睛】
    本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
    12、C
    【解析】
    ∵EF⊥AC,点G是AE中点,
    ∴OG=AG=GE=AE,
    ∵∠AOG=30°,
    ∴∠OAG=∠AOG=30°,
    ∠GOE=90°-∠AOG=90°-30°=60°,
    ∴△OGE是等边三角形,故(3)正确;
    设AE=2a,则OE=OG=a,
    由勾股定理得,AO=,
    ∵O为AC中点,
    ∴AC=2AO=2,
    ∴BC=AC=,
    在Rt△ABC中,由勾股定理得,AB==3a,
    ∵四边形ABCD是矩形,
    ∴CD=AB=3a,
    ∴DC=3OG,故(1)正确;
    ∵OG=a,BC=,
    ∴OG≠BC,故(2)错误;
    ∵S△AOE=a•=,
    SABCD=3a•=32,
    ∴S△AOE=SABCD,故(4)正确;
    综上所述,结论正确是(1)(3)(4)共3个,
    故选C.
    【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-9
    【解析】
    根据有理数的计算即可求解.
    【详解】
    (-2)×3+(-3)=-6-3=-9
    【点睛】
    此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.
    14、或.
    【解析】
    由图可知,在△OMN中,∠OMN的度数是一个定值,且∠OMN不为直角. 故当∠ONM=90°或∠MON=90°时,△OMN是直角三角形. 因此,本题需要按以下两种情况分别求解.
    (1) 当∠ONM=90°时,则DN⊥BC.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵在Rt△ABC中,∠A=90°,AB=AC,
    ∴∠C=45°,
    ∵BC=20,
    ∴在Rt△ABC中,,
    ∵DE是△ABC的中位线,
    ∴,
    ∴在Rt△CFE中,,.
    ∵BM=3,BC=20,FC=5,
    ∴MF=BC-BM-FC=20-3-5=12.
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∵DE是△ABC的中位线,BC=20,
    ∴,DE∥BC,
    ∴∠DEM=∠EMF,即∠DEO=∠EMF,
    ∴,
    ∴在Rt△ODE中,.
    (2) 当∠MON=90°时,则DN⊥ME.

    过点E作EF⊥BC,垂足为F.(如图)
    ∵EF=5,MF=12,
    ∴在Rt△MFE中,,
    ∴在Rt△MFE中,,
    ∵∠DEO=∠EMF,
    ∴,
    ∵DE=10,
    ∴在Rt△DOE中,.
    综上所述,DO的长是或.
    故本题应填写:或.
    点睛:
    在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.
    15、
    【解析】
    分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.
    详解:∵关于x、y的二元一次方程组的解是,
    ∴将解代入方程组
    可得m=﹣1,n=2
    ∴关于a、b的二元一次方程组整理为:
    解得:
    点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.
    16、1
    【解析】
    试题分析:∵==4,∴=4-1=1.故答案为1.
    考点:完全平方公式.
    17、1.
    【解析】
    根据(a+b)(a-b)=a1-b1,可得(a+b)(a-b)=8,再代入a+b=4可得答案.
    【详解】
    ∵a1-b1=8,
    ∴(a+b)(a-b)=8,
    ∵a+b=4,
    ∴a-b=1,
    故答案是:1.
    【点睛】
    考查了平方差,关键是掌握(a+b)(a-b)=a1-b1.
    18、4
    【解析】
    试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.
    解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,
    ∴∠EBD=∠DBC,∠FCD=∠DCB,
    ∵EF∥BC,
    ∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,
    ∴BE=DE,DF=EC,
    ∵EF=DE+DF,
    ∴EF=EB+CF=2BE,
    ∵等边△ABC的边长为6,
    ∵EF∥BC,
    ∴△ADE是等边三角形,
    ∴EF=AE=2BE,
    ∴EF==,
    故答案为4
    考点:等边三角形的判定与性质;平行线的性质.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)(2)
    【解析】
    试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;
    (2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.
    试题解析:解:(1).
    (2)用表格列出所有可能的结果:
    第二次
    第一次

    红球1

    红球2

    白球

    黑球

    红球1



    (红球1,红球2)

    (红球1,白球)

    (红球1,黑球)

    红球2

    (红球2,红球1)



    (红球2,白球)

    (红球2,黑球)

    白球

    (白球,红球1)

    (白球,红球2)



    (白球,黑球)

    黑球

    (黑球,红球1)

    (黑球,红球2)

    (黑球,白球)



    由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.
    ∴P(两次都摸到红球)==.
    考点:概率统计
    20、(1)详见解析;(2)∠BDE=20°.
    【解析】
    (1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.
    【详解】
    (1)如图1,∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∵DE⊥AB,
    ∴∠DEA=90°,
    ∴∠DEA=∠ABC,
    ∴BC∥DF,
    ∴∠F=∠PBC,
    ∵四边形BCDF是圆内接四边形,
    ∴∠F+∠DCB=180°,
    ∵∠PCB+∠DCB=180°,
    ∴∠F=∠PCB,
    ∴∠PBC=∠PCB,
    ∴PC=PB;
    (2)如图2,连接OD,

    ∵AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥DC,
    ∵BC∥DE,
    ∴四边形DHBC是平行四边形,
    ∴BC=DH=1,
    在Rt△ABC中,AB=,tan∠ACB=,
    ∴∠ACB=60°,
    ∴BC=AC=OD,
    ∴DH=OD,
    在等腰△DOH中,∠DOH=∠OHD=80°,
    ∴∠ODH=20°,
    设DE交AC于N,
    ∵BC∥DE,
    ∴∠ONH=∠ACB=60°,
    ∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
    ∴∠DOC=∠DOH﹣∠NOH=40°,
    ∵OA=OD,
    ∴∠OAD=∠DOC=20°,
    ∴∠CBD=∠OAD=20°,
    ∵BC∥DE,
    ∴∠BDE=∠CBD=20°.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.
    21、
    【解析】
    连接,根据线段垂直平分线的性质得到,根据等腰三角形的性质、三角形内角和定理计算即可.
    【详解】
    连接,
    ∵为的中点,于点,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.

    【点睛】
    本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
    22、甲建筑物的高度约为,乙建筑物的高度约为.
    【解析】
    分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
    详解:如图,过点作,垂足为.

    则.
    由题意可知,,,,,.
    可得四边形为矩形.
    ∴,.
    在中,,
    ∴.
    在中,,
    ∴.
    ∴ .
    ∴.
    答:甲建筑物的高度约为,乙建筑物的高度约为.
    点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
    23、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时
    【解析】
    (1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;
    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.
    【详解】
    (1)如图,过点P作PE⊥MN,垂足为E,
    由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
    ∵PE=30海里,∴AP=60海里,
    ∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
    ∴PE=EB=30海里,
    在Rt△PEB中,BP==30≈42海里,
    故AP=60海里,BP=42(海里);

    (2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,
    根据题意,得,
    解得x=20,
    经检验,x=20是原方程的解,
    甲船的速度为1.2x=1.2×20=24(海里/时).,
    答:甲船的速度是24海里/时,乙船的速度是20海里/时.
    【点睛】
    本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.
    24、(1)a的值为200,b 的值为30;(2)甲追上乙时,与学校的距离4100米;(3)1.1或17.1.
    【解析】
    (1)根据速度=路程÷时间,即可解决问题.(2)首先求出甲返回用的时间,再列出方程即可解决问题.(3)分两种情形列出方程即可解决问题.
    【详解】
    解:(1)由题意a==200,b==30,
    ∴a=200,b=30.
    (2) +4.1=7.1,
    设t分钟甲追上乙,由题意,300(t−7.1)=200t,
    解得t=22.1,
    22.1×200=4100,
    ∴甲追上乙时,距学校的路程4100米.
    (3)两人相距100米是的时间为t分钟.
    由题意:1.1×200(t−4.1)+200(t−4.1)=100,解得t=1.1分钟,
    或300(t−7.1)+100=200t,解得t=17.1分钟,
    故答案为1.1分钟或17.1分钟.
    点睛:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析即图象的变化趋势得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    25、
    【解析】
    试题分析:把相关的特殊三角形函数值代入进行计算即可.
    试题解析:原式=.
    26、AD的长约为225m,大楼AB的高约为226m
    【解析】
    首先设大楼AB的高度为xm,在Rt△ABC中利用正切函数的定义可求得 ,然后根据∠ADB的正切表示出AD的长,又由CD=96m,可得方程 ,解此方程即可求得答案.
    【详解】
    解:设大楼AB的高度为xm,
    在Rt△ABC中,∵∠C=32°,∠BAC=92°,
    ∴ ,
    在Rt△ABD中, ,
    ∴,
    ∵CD=AC-AD,CD=96m,
    ∴ ,
    解得:x≈226,

    答:大楼AB的高度约为226m,AD的长约为225m.
    【点睛】
    本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用.
    27、(1)90°;(1)AE1+EB1=AC1,证明见解析.
    【解析】
    (1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
    (1)根据勾股定理解答.
    【详解】
    解:(1)∵点D是BC边的中点,DE⊥BC,
    ∴DE是线段BC的垂直平分线,
    ∴EB=EC,
    ∴∠ECB=∠B=45°,
    ∴∠AEC=∠ECB+∠B=90°;
    (1)AE1+EB1=AC1.
    ∵∠AEC=90°,
    ∴AE1+EC1=AC1,
    ∵EB=EC,
    ∴AE1+EB1=AC1.
    【点睛】
    本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

    相关试卷

    山东省牡丹区王浩屯镇初级中学2023-2024学年数学九上期末学业质量监测试题含答案:

    这是一份山东省牡丹区王浩屯镇初级中学2023-2024学年数学九上期末学业质量监测试题含答案,共7页。

    2023-2024学年山东省牡丹区王浩屯镇初级中学数学九上期末统考试题含答案:

    这是一份2023-2024学年山东省牡丹区王浩屯镇初级中学数学九上期末统考试题含答案,共7页。试卷主要包含了答题时请按要求用笔,已知,则的值是,下列运算中,正确的是等内容,欢迎下载使用。

    2023-2024学年山东省牡丹区王浩屯镇初级中学八上数学期末学业水平测试模拟试题含答案:

    这是一份2023-2024学年山东省牡丹区王浩屯镇初级中学八上数学期末学业水平测试模拟试题含答案,共6页。试卷主要包含了下列运算正确的是,下列说法不正确的是,一次函数的图象与轴的交点坐标是,下列计算正确的是,下列根式中,是最简二次根式的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map