终身会员
搜索
    上传资料 赚现金
    2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析01
    2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析02
    2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析

    展开
    这是一份2022届山东省临沂市沂南县重点达标名校中考数学最后一模试卷含解析,共18页。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为(  )
    A.91,88 B.85,88 C.85,85 D.85,84.5
    2.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )

    A.32° B.64° C.77° D.87°
    3.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )

    A. B. C. D.
    4.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )

    A. B. C. D.
    5.已知函数的图象与x轴有交点.则的取值范围是( )
    A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
    6.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
    A.平均数是15 B.众数是10 C.中位数是17 D.方差是
    7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为

    A. B.3 C.1 D.
    8.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是(  )
    A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b
    9.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是(  )
    A.3cm,4cm,8cm B.8cm,7cm,15cm
    C.13cm,12cm,20cm D.5cm,5cm,11cm
    10.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于(  )
    A.4 B.6 C.16π D.8
    二、填空题(共7小题,每小题3分,满分21分)
    11.方程组的解一定是方程_____与_____的公共解.
    12.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
    13.如图,在圆心角为90°的扇形OAB中,半径OA=1cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为_____cm1.

    14.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.

    15.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.

    16.分解因式: ____________.
    17.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.

    三、解答题(共7小题,满分69分)
    18.(10分)某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
    19.(5分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.

    20.(8分)先化简,后求值:,其中.
    21.(10分)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批
    花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多元.
    (1)第一批花每束的进价是多少元.
    (2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?
    22.(10分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
    (1)甲种商品与乙种商品的销售单价各多少元?
    (2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
    23.(12分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.

    24.(14分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.
    求证:AP=BQ;当BQ= 时,求的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,
    把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.
    考点:众数,中位数
    点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题
    2、C
    【解析】
    试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.
    考点:旋转的性质.
    3、C
    【解析】
    先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
    【详解】
    解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
    后面一排分别有2个、3个、1个小正方体搭成三个长方体,
    并且这两排右齐,故从正面看到的视图为:

    故选:C.
    【点睛】
    本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
    4、C
    【解析】
    过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.
    【详解】
    过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,
    ∵⊙O的周长等于6πcm,
    ∴2πr=6π,
    解得:r=3,
    ∴⊙O的半径为3cm,即OA=3cm,
    ∵六边形ABCDEF是正六边形,
    ∴∠AOB=×360°=60°,OA=OB,
    ∴△OAB是等边三角形,
    ∴AB=OA=3cm,
    ∵OH⊥AB,
    ∴AH=AB,
    ∴AB=OA=3cm,
    ∴AH=cm,OH==cm,
    ∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).

    故选C.
    【点睛】
    此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.
    5、B
    【解析】
    试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
    考点:函数图像与x轴交点的特点.
    6、C
    【解析】
    解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
    故选C.
    【点睛】
    本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
    7、A
    【解析】
    首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可
    【详解】
    ∵AB=3,AD=4,∴DC=3
    ∴根据勾股定理得AC=5
    根据折叠可得:△DEC≌△D′EC,
    ∴D′C=DC=3,DE=D′E
    设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
    在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
    解得:x=
    故选A.
    8、C
    【解析】
    ∵∠C=90°,
    ∴cosA=,sinA= ,tanA=,cotA=,
    ∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,
    ∴只有选项C正确,
    故选C.
    【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.
    9、C
    【解析】
    根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
    【详解】
    A、3+4<8,不能组成三角形;
    B、8+7=15,不能组成三角形;
    C、13+12>20,能够组成三角形;
    D、5+5<11,不能组成三角形.
    故选:C.
    【点睛】
    本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.
    10、A
    【解析】
    由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
    【详解】
    解:由题意知:底面周长=8π,
    ∴底面半径=8π÷2π=1.
    故选A.
    【点睛】
    此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.

    二、填空题(共7小题,每小题3分,满分21分)
    11、5x﹣3y=8 3x+8y=9
    【解析】
    方程组的解一定是方程5x﹣3y=8与3x+8y=9的公共解.
    故答案为5x﹣3y=8;3x+8y=9.
    12、
    【解析】
    设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
    【详解】
    ∵甲平均每分钟打x个字,
    ∴乙平均每分钟打(x+20)个字,
    根据题意得:,
    故答案为.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    13、π+﹣
    【解析】
    试题分析:如图,连接OC,EC,由题意得△OCD≌△OCE,OC⊥DE,DE==,所以S四边形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以阴影部分的面积为:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案为.

    考点:扇形面积的计算.
    14、4m 
    【解析】
    设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.
    【详解】
    设路灯的高度为x(m),
    ∵EF∥AD,
    ∴△BEF∽△BAD,
    ∴,
    即,
    解得:DF=x﹣1.8,
    ∵MN∥AD,
    ∴△CMN∽△CAD,
    ∴,
    即,
    解得:DN=x﹣1.5,
    ∵两人相距4.7m,
    ∴FD+ND=4.7,
    ∴x﹣1.8+x﹣1.5=4.7,
    解得:x=4m,
    答:路灯AD的高度是4m.
    15、①②③
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
    【详解】
    ①正确.
    理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
    ∴Rt△ABG≌Rt△AFG(HL);
    ②正确.
    理由:
    EF=DE=CD=2,设BG=FG=x,则CG=6-x.
    在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
    解得x=1.
    ∴BG=1=6-1=GC;
    ③正确.
    理由:
    ∵CG=BG,BG=GF,
    ∴CG=GF,
    ∴△FGC是等腰三角形,∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG;
    ∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,
    ∴AG∥CF;

    ④错误.
    理由:
    ∵S△GCE=GC•CE=×1×4=6
    ∵GF=1,EF=2,△GFC和△FCE等高,
    ∴S△GFC:S△FCE=1:2,
    ∴S△GFC=×6=≠1.
    故④不正确.

    ∴正确的个数有1个: ①②③.
    故答案为①②③
    【点睛】
    本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
    16、
    【解析】
    试题分析:根据因式分解的方法,先提公因式,再根据平方差公式分解:.
    考点:因式分解
    17、2.4cm
    【解析】
    分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.
    详解:由图2可得,AC=3,BC=4,
    ∴AB=.
    当t=5时,如图所示:

    此时AC+CP=5,故BP=AC+BC-AC-CP=2,
    ∵sin∠B==,
    ∴PD=BP·sin∠B=2×==1.2(cm).
    故答案是:1.2 cm.
    点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.

    三、解答题(共7小题,满分69分)
    18、1人
    【解析】
    解:设九年级学生有x人,根据题意,列方程得:
    ,整理得0.8(x+88)=x,解之得x=1.
    经检验x=1是原方程的解.
    答:这个学校九年级学生有1人.
    设九年级学生有x人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款1936元”可得每个文具包的花费是:元,根据“若多买88个,就可享受8折优惠,同样只需付款1936元”可得每个文具包的花费是:,根据题意可得方程,解方程即可.
    19、(1)y=﹣,y=﹣x+2;(2)6;(3)当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
    【解析】
    (1)利用待定系数法,即可得到反比例函数和一次函数的解析式;
    (2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=×4×3=6;
    (3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.
    【详解】
    (1)如图,在Rt△OAD中,∠ADO=90°,
    ∵tan∠AOD=,AD=3,
    ∴OD=2,
    ∴A(﹣2,3),
    把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,
    所以反比例函数解析式为:y=﹣,
    把B(m,﹣1)代入y=﹣,得:m=6,
    把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,
    解得:,
    所以一次函数解析式为:y=﹣x+2;
    (2)当y=0时,﹣ x+2=0,
    解得:x=4,
    则C(4,0),
    所以;
    (3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);
    当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);
    当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),
    令y=0,得到y=﹣,即E4(﹣,0),
    综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.
    20、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    21、(1)2元;(2)第二批花的售价至少为元;
    【解析】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据数量=总价÷单价结合第二批所购花的数量是第一批所购花数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)由第二批花的进价比第一批的进价多0.5元可求出第二批花的进价,设第二批菊花的售价为m元,根据利润=每束花的利润×数量结合总利润不低于1500元,即可得出关于m的一元一次不等式,解之即可得出结论.
    【详解】
    (1)设第一批花每束的进价是x元,则第二批花每束的进价是元,
    根据题意得:,
    解得:,
    经检验:是原方程的解,且符合题意.
    答:第一批花每束的进价是2元.
    (2)由可知第二批菊花的进价为元.
    设第二批菊花的售价为m元,
    根据题意得:,
    解得:.
    答:第二批花的售价至少为元.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
    22、(1)甲种商品的销售单价900元,乙种商品的销售单价600元;(1)至少销售甲种商品1万件.
    【解析】
    (1)可设甲种商品的销售单价x元,乙种商品的销售单价y元,根据等量关系:①1件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比1件乙种商品的销售收入多1500元,列出方程组求解即可;
    (1)可设销售甲种商品a万件,根据甲、乙两种商品的销售总收入不低于5400万元,列出不等式求解即可.
    【详解】
    (1)设甲种商品的销售单价x元,乙种商品的销售单价y元,依题意有:
    ,解得.
    答:甲种商品的销售单价900元,乙种商品的销售单价600元;
    (1)设销售甲种商品a万件,依题意有:
    900a+600(8﹣a)≥5400,解得:a≥1.
    答:至少销售甲种商品1万件.
    【点睛】
    本题考查了一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.
    23、证明见解析.
    【解析】
    连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
    【详解】
    证明:如图,连接,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,


    ∴,则,
    ∴,
    ∴,即,
    在和中,
    ∵,
    ∴,

    ∵是的切线,则,
    ∴,
    ∴,则,
    ∴是的切线.

    【点睛】
    本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
    24、(1)详见解析;(2);(3)4 【解析】
    (1) 连接OQ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性质即可得证.
    (2)由(1)中全等三角形性质得∠AOP=∠BOQ,从而可得P、O、Q三点共线,在Rt△BOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD度数,由弧长公式即可求得答案.
    (3)由直角三角形性质可得△APO的外心是OA的中点 ,结合题意可得OC取值范围.
    【详解】
    (1)证明:连接OQ.

    ∵AP、BQ是⊙O的切线,
    ∴OP⊥AP,OQ⊥BQ,
    ∴∠APO=∠BQO=90∘,
    在Rt△APO和Rt△BQO中,

    ∴Rt△APO≌Rt△BQO,
    ∴AP=BQ.
    (2)∵Rt△APO≌Rt△BQO,
    ∴∠AOP=∠BOQ,
    ∴P、O、Q三点共线,
    ∵在Rt△BOQ中,cosB=,
    ∴∠B=30∘,∠BOQ= 60° ,
    ∴OQ=OB=4,
    ∵∠COD=90°,
    ∴∠QOD= 90°+ 60° = 150°,
    ∴优弧QD的长=,
    (3)解:设点M为Rt△APO的外心,则M为OA的中点,
    ∵OA=1,
    ∴OM=4,
    ∴当△APO的外心在扇形COD的内部时,OM<OC,
    ∴OC的取值范围为4<OC<1.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.

    相关试卷

    2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年浙江宁波江北区重点达标名校中考数学最后一模试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,﹣22×3的结果是等内容,欢迎下载使用。

    2022年山东省济宁市曲阜市重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东省济宁市曲阜市重点达标名校中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析: 这是一份2022年山东青岛崂山区重点达标名校中考数学最后一模试卷含解析,共15页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,如图,一段抛物线等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map