2022届山东省济宁市中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,若a∥b,∠1=60°,则∠2的度数为( )
A.40° B.60° C.120° D.150°
2.浙江省陆域面积为101800平方千米。数据101800用科学记数法表示为( )
A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×106
3.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )
A. B. C. D.
4.下列判断错误的是( )
A.对角线相等的四边形是矩形
B.对角线相互垂直平分的四边形是菱形
C.对角线相互垂直且相等的平行四边形是正方形
D.对角线相互平分的四边形是平行四边形
5.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是( )
A.13,5 B.6.5,3 C.5,2 D.6.5,2
6.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
7.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为( )
A.4 B.3 C.2 D.1
8.下列命题是真命题的是( )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.两条对角线相等的四边形是平行四边形
C.两组对边分别相等的四边形是平行四边形
D.平行四边形既是中心对称图形,又是轴对称图形
9.下列方程中,是一元二次方程的是( )
A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
10.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
11.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为( )
A. B. C. D.
12.计算3×(﹣5)的结果等于( )
A.﹣15 B.﹣8 C.8 D.15
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.
14.计算﹣的结果为_____.
15.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)
品种
第1年
第2年
第3年
第4年
第5年
品种
甲
9.8
9.9
10.1
10
10.2
甲
乙
9.4
10.3
10.8
9.7
9.8
乙
经计算,,试根据这组数据估计_____中水稻品种的产量比较稳定.
16.如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm.
17.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).
18.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
20.(6分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)
21.(6分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图(1)中画出一个等腰△ABE,使其面积为3.5;
(2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.
22.(8分)如图①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.
(1)求证:PD是⊙O的切线;
(2)若AB=4,DA=DP,试求弧BD的长;
(3)如图②,点M是弧AB的中点,连结DM,交AB于点N.若tanA=,求的值.
23.(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);
(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
24.(10分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:
(1)图(1)中的BC长是多少?
(2)图(2)中的a是多少?
(3)图(1)中的图形面积是多少?
(4)图(2)中的b是多少?
25.(10分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
26.(12分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
27.(12分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
(参考数据:sin15°=,cos15°=,tan15°=2﹣)
(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
如图:
∵∠1=60°,
∴∠3=∠1=60°,
又∵a∥b,
∴∠2+∠3=180°,
∴∠2=120°,
故选C.
点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.
2、B
【解析】
.
故选B.
点睛:在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
3、D
【解析】试题分析:俯视图是从上面看到的图形.
从上面看,左边和中间都是2个正方形,右上角是1个正方形,
故选D.
考点:简单组合体的三视图
4、A
【解析】
利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项.
【详解】
解:、对角线相等的四边形是矩形,错误;
、对角线相互垂直平分的四边形是菱形,正确;
、对角线相互垂直且相等的平行四边形是正方形,正确;
、对角线相互平分的四边形是平行四边形,正确;
故选:.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大.
5、D
【解析】
根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,
【详解】
解:如下图,
∵△ABC的三条边长分别是5,13,12,且52+122=132,
∴△ABC是直角三角形,
其斜边为外切圆直径,
∴外切圆半径==6.5,
内切圆半径==2,
故选D.
【点睛】
本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.
6、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、B
【解析】
试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;
③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;
④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;
综上所述,正确的结论有①③⑤,共3个,故选B.
考点:四边形综合题.
8、C
【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.
【详解】
A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;
B、两条对角线互相平分的四边形是平行四边形.故本选项错误;
C、两组对边分别相等的四边形是平行四边形.故本选项正确;
D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;
故选:C.
【点睛】
考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.
9、D
【解析】
试题解析:含有两个未知数,不是整式方程,C没有二次项.
故选D.
点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
10、B
【解析】
依题意在同一坐标系内画出图像即可判断.
【详解】
根据题意可作两函数图像,由图像知交点在第二象限,故选B.
【点睛】
此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.
11、A
【解析】
根据图形,结合题目所给的运算法则列出方程组.
【详解】
图2所示的算筹图我们可以表述为:.
故选A.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
12、A
【解析】
按照有理数的运算规则计算即可.
【详解】
原式=-3×5=-15,故选择A.
【点睛】
本题考查了有理数的运算,注意符号不要搞错.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
科学记数法的表示形式为ax10n的形式,其中1≤lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:0.0000872=
故答案为:
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14、.
【解析】
根据同分母分式加减运算法则化简即可.
【详解】
原式=,
故答案为.
【点睛】
本题考查了分式的加减运算,熟记运算法则是解题的关键.
15、甲
【解析】
根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.
【详解】
甲种水稻产量的方差是:
,
乙种水稻产量的方差是:
,
∴0.02<0.124.∴产量比较稳定的小麦品种是甲.
16、2
【解析】
要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为6cm,圆柱高为2cm,
∴AB=2cm,BC=BC′=3cm,
∴AC2=22+32=13,
∴AC=cm,
∴这圈金属丝的周长最小为2AC=2cm.
故答案为2.
【点睛】
本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
17、4n﹣1
【解析】
分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形.
【详解】
分别数出图、图、图中的三角形的个数,
图中三角形的个数为;
图中三角形的个数为;
图中三角形的个数为;
可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.
按照这个规律,如果设图形的个数为n,那么其中三角形的个数为.
故答案为.
【点睛】
此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
18、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
20、楼高AB为54.6米.
【解析】
过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
【详解】
解:
如图,过点C作CE⊥AB于E,
则AE=CD=20,
∵CE====20,
BE=CEtanα=20×tan45°=20×1=20,
∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
答:楼高AB为54.6米.
【点睛】
此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
21、 (1)见解析;(2)DF=
【解析】
(1)直接利用等腰三角形的定义结合勾股定理得出答案;
(2)利用直角三角的定义结合勾股定理得出符合题意的答案.
【详解】
(1)如图(1)所示:△ABE,即为所求;
(2)如图(2)所示:△CDF即为所求,DF=.
【点睛】
此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.
22、(1)见解析;(2);(3).
【解析】
(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;
(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;
(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可.
【详解】
(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,
∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
且D在圆上,∴PD是⊙O的切线.
(2)设∠A=x,
∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
在△ABD中,
∠A+∠ABD=90o,x=2x=90o,即x=30o,
∴∠DOB=60o,∴弧BD长.
(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,
∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,
在Rt△BDF中,DF=,
由△OMN∽△FDN得.
【点睛】
本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o是解(2)的关键,证明△OMN∽△FDN是解(3)的关键.
23、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
24、 (1)8cm(2)24cm2(3)60cm2(4) 17s
【解析】
(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;
(2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;
(3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,
(4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.
【详解】
(1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;
(2) a=S△ABC=×6×8=24(㎝2) ;
(3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝
∴图1中的图象面积为6×14-4×6=60㎝2 ;
(4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒.
25、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
【详解】
(1)将点E代入直线解析式中,
0=﹣×4+m,
解得m=3,
∴解析式为y=﹣x+3,
∴C(0,3),
∵B(3,0),
则有,
解得,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线BD的解析式为y=kx+b,代入点B、D,
,
解得,
∴直线BD的解析式为y=﹣2x+6,
则点M的坐标为(x,﹣2x+6),
∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
∴当x=时,S有最大值,最大值为.
(3)存在,
如图所示,
设点P的坐标为(t,0),
则点G(t,﹣t+3),H(t,﹣t2+2t+3),
∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
CG==t,
∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
而HG∥y轴,
∴HG∥CF,HG=HF,CG=CF,
∠GHC=∠CHF,
∴∠FCH=∠CHG,
∴∠FCH=∠FHC,
∴∠GCH=∠GHC,
∴CG=HG,
∴|t2﹣t|=t,
当t2﹣t=t时,
解得t1=0(舍),t2=4,
此时点P(4,0).
当t2﹣t=﹣t时,
解得t1=0(舍),t2=,
此时点P(,0).
综上,点P的坐标为(4,0)或(,0).
【点睛】
此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
26、(1);(2)1<x<1.
【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
【详解】
解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
∴n=﹣1+5,解得:n=1,
∴点A的坐标为(1,1).
∵反比例函数y=(k≠0)过点A(1,1),
∴k=1×1=1,
∴反比例函数的解析式为y=.
联立,解得:或,
∴点B的坐标为(1,1).
(2)观察函数图象,发现:
当1<x<1.时,反比例函数图象在一次函数图象下方,
∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
【点睛】
本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
27、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
【详解】
解:(1)EF∥BD.
证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
∴DE=BF,
又∵DE∥BF,
∴四边形DBFE是平行四边形,
∴EF∥DB;
(2)①AE=AM.
∵EF∥BD,
∴∠F=∠ABD=45°,
∴MB=BF=DE,
∵正方形ABCD,
∴∠ADC=∠ABC=90°,AB=AD,
∴△ADE≌△ABM,
∴AE=AM;
②△AEM能为等边三角形.
若△AEM是等边三角形,则∠EAM=60°,
∵△ADE≌△ABM,
∴∠DAE=∠BAM=15°,
∵tan∠DAE=,AD=8,
∴2﹣=,
∴DE=16﹣8,
即当DE=16﹣8时,△AEM是等边三角形;
(3)△ANF的面积不变.
设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,
∵CD∥AB,
∴△DEN∽△BNA,
∴=,
∴,
∴PN=,
∴S△ANF=AF×PN=×(x+8)×=32,
即△ANF的面积不变.
【点睛】
本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
2023年山东省济宁市中考数学真题(含解析): 这是一份2023年山东省济宁市中考数学真题(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年山东省泰安六中中考数学押题试卷(含解析): 这是一份2023年山东省泰安六中中考数学押题试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年山东省曹县中考数学押题试卷含解析: 这是一份2022年山东省曹县中考数学押题试卷含解析,共22页。试卷主要包含了化简的结果是等内容,欢迎下载使用。