年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届山东省青岛市西海岸新区6中中考四模数学试题含解析

    2022届山东省青岛市西海岸新区6中中考四模数学试题含解析第1页
    2022届山东省青岛市西海岸新区6中中考四模数学试题含解析第2页
    2022届山东省青岛市西海岸新区6中中考四模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省青岛市西海岸新区6中中考四模数学试题含解析

    展开

    这是一份2022届山东省青岛市西海岸新区6中中考四模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是(  )
    A. B. C. D.
    2.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是

    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    3.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为( )

    A.米 B.30sinα米 C.30tanα米 D.30cosα米
    4.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为(  )

    A.10° B.15° C.20° D.25°
    5.下列美丽的图案中,不是轴对称图形的是(   )
    A. B. C. D.
    6.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是(  )

    A.(3,1) B.(2,2) C.(1,3) D.(3,0)
    7.如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?(  )

    A.1 B.2 C.2﹣2 D.4﹣2
    8.如图是由四个小正方体叠成的一个几何体,它的左视图是( )

    A. B. C. D.
    9.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )
    A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg
    10.-2的倒数是( )
    A.-2 B. C. D.2
    11.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是(  )
    A. B. C. D.
    12.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )

    A. B.
    C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.同时掷两粒骰子,都是六点向上的概率是_____.
    14.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.

    15.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.
    16.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
    17.已知a、b满足a2+b2﹣8a﹣4b+20=0,则a2﹣b2=_____.
    18.化简:÷(﹣1)=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?
    20.(6分)如图,在等腰△ABC中,AB=BC,以AB为直径的⊙O与AC相交于点D,过点D作DE⊥BC交AB延长线于点E,垂足为点F.

    (1)证明:DE是⊙O的切线;
    (2)若BE=4,∠E=30°,求由、线段BE和线段DE所围成图形(阴影部分)的面积,
    (3)若⊙O的半径r=5,sinA=,求线段EF的长.
    21.(6分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
    22.(8分)如图,已知二次函数的图象经过,两点.
    求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.
    23.(8分)某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠,在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,A1,A2,A3区域分别对应9折8折和7折优惠,B1,B2,B3,B4区域对应不优惠?本次活动共有两种方式.
    方式一:转动转盘甲,指针指向折扣区域时,所购物品享受对应的折扣优惠,指针指向其他区域无优惠;
    方式二:同时转动转盘甲和转盘乙,若两个转盘的指针均指向折扣区域时,所购物品享受折上折的优惠,其他情况无优惠.
    (1)若顾客选择方式一,则享受优惠的概率为   ;
    (2)若顾客选择方式二,请用树状图或列表法列出所有可能顾客享受折上折优惠的概率.

    24.(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
    (1)求抛物y=x2+bx+c线的解析式.
    (2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
    (3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).

    25.(10分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.
    (1)求证:≌;
    (2)当时,求四边形AECF的面积.

    26.(12分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.

    (1)判断直线AC与圆O的位置关系,并证明你的结论;
    (2)若AC=8,cos∠BED=,求AD的长.
    27.(12分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
    (1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
    (2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.
    【详解】
    A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
    B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;
    C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
    D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.
    故选C.
    【点睛】
    本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.
    2、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.

    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    3、C
    【解析】
    试题解析:在Rt△ABO中,
    ∵BO=30米,∠ABO为α,
    ∴AO=BOtanα=30tanα(米).
    故选C.
    考点:解直角三角形的应用-仰角俯角问题.
    4、B
    【解析】
    根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
    【详解】
    根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
    ∵BO∥CD
    ∴∠BOC=∠DCO=90°
    ∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
    故选B
    【点睛】
    此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
    5、A
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项正确;
    B、是轴对称图形,故本选项错误;
    C、是轴对称图形,故本选项错误;
    D、是轴对称图形,故本选项错误.
    故选A.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    6、B
    【解析】
    作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
    【详解】
    解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).

    故选:B.
    【点睛】
    此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    7、C
    【解析】
    先判断出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面积的两种算法即可求出PG,然后计算出PQ即可.
    【详解】
    解:如图,连接PF,QF,PC,QC

    ∵P、Q两点分别为△ACF、△CEF的内心,
    ∴PF是∠AFC的角平分线,FQ是∠CFE的角平分线,
    ∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,
    ∴∠PFC=∠QFC=30°,
    同理,∠PCF=∠QCF
    ∴PQ⊥CF,
    ∴△PQF是等边三角形,
    ∴PQ=2PG;
    易得△ACF≌△ECF,且内角是30º,60º,90º的三角形,
    ∴AC=2,AF=2,CF=2AF=4,
    ∴S△ACF=AF×AC=×2×2=2,
    过点P作PM⊥AF,PN⊥AC,PQ交CF于G,
    ∵点P是△ACF的内心,
    ∴PM=PN=PG,
    ∴S△ACF=S△PAF+S△PAC+S△PCF
    =AF×PM+AC×PN+CF×PG
    =×2×PG+×2×PG+×4×PG
    =(1++2)PG
    =(3+)PG
    =2,
    ∴PG==,
    ∴PQ=2PG=2()=2-2.
    故选C.
    【点睛】
    本题是三角形的内切圆与内心,主要考查了三角形的内心的特点,三角形的全等,解本题的关键是知道三角形的内心的意义.
    8、A
    【解析】
    试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
    考点:简单组合体的三视图.
    9、D
    【解析】
    试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.
    10、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    11、C
    【解析】
    试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.
    考点:简单几何体的三视图.
    12、C
    【解析】
    分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
    详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
    B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
    D、∵sin∠ABE=,
    ∵∠EBD=∠EDB
    ∴BE=DE
    ∴sin∠ABE=.
    由已知不能得到△ABE∽△CBD.故选C.
    点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
    【详解】
    解:都是六点向上的概率是.
    【点睛】
    本题考查了概率公式的应用.
    14、(4π﹣3)cm1
    【解析】
    连接OB、OC,作OH⊥BC于H,根据圆周角定理可知∠BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-S△OBC即可得答案
    【详解】
    :连接OB、OC,作OH⊥BC于H,
    则BH=HC= BC= 3,
    ∵△ABC为等边三角形,
    ∴∠A=60°,
    由圆周角定理得,∠BOC=1∠A=110°,
    ∵OB=OC,
    ∴∠OBC=30°,
    ∴OB==1 ,OH=,
    ∴阴影部分的面积= ﹣×6×=4π﹣3 ,

    故答案为:(4π﹣3)cm1.
    【点睛】
    本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.
    15、1
    【解析】
    试题解析:如图,

    ∵菱形ABCD中,BD=8,AB=5,
    ∴AC⊥BD,OB=BD=4,
    ∴OA==3,
    ∴AC=2OA=6,
    ∴这个菱形的面积为:AC•BD=×6×8=1.
    16、2.
    【解析】
    把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
    【详解】
    解:∵m是方程2x2﹣3x﹣2=0的一个根,
    ∴代入得:2m2﹣3m﹣2=0,
    ∴2m2﹣3m=2,
    ∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
    故答案为:2.
    【点睛】
    本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
    17、1
    【解析】
    利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可.
    【详解】
    a2+b2﹣8a﹣4b+20=0,
    a2﹣8a+16+b2﹣4b+4=0,
    (a﹣4)2+(b﹣2)2=0
    a﹣4=0,b﹣2=0,
    a=4,b=2,
    则a2﹣b2=16﹣4=1,
    故答案为1.
    【点睛】
    本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.
    18、﹣.
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式


    .
    故答案为:.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、客房8间,房客63人
    【解析】
    设该店有间客房,以人数相等为等量关系列出方程即可.
    【详解】
    设该店有间客房,则

    解得

    答:该店有客房8间,房客63人.
    【点睛】
    本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.
    20、(1)见解析 (2)8(3)
    【解析】
    分析:(1)连接BD、OD,由AB=BC及∠ADB=90°知AD=CD,根据AO=OB知OD是△ABC的中位线,据此知OD∥BC,结合DE⊥BC即可得证;
    (2)设⊙O的半径为x,则OB=OD=x,在Rt△ODE中由sinE=求得x的值,再根据S阴影=S△ODE-S扇形ODB计算可得答案.
    (3)先证Rt△DFB∽Rt△DCB得,据此求得BF的长,再证△EFB∽△EDO得,据此求得EB的长,继而由勾股定理可得答案.
    详解:(1)如图,连接BD、OD,

    ∵AB是⊙O的直径,
    ∴∠BDA=90°,
    ∵BA=BC,
    ∴AD=CD,
    又∵AO=OB,
    ∴OD∥BC,
    ∵DE⊥BC,
    ∴OD⊥DE,
    ∴DE是⊙O的切线;
    (2)设⊙O的半径为x,则OB=OD=x,
    在Rt△ODE中,OE=4+x,∠E=30°,
    ∴,
    解得:x=4,
    ∴DE=4,S△ODE=×4×4=8,
    S扇形ODB=,
    则S阴影=S△ODE-S扇形ODB=8-;
    (3)在Rt△ABD中,BD=ABsinA=10×=2,
    ∵DE⊥BC,
    ∴Rt△DFB∽Rt△DCB,
    ∴,即,
    ∴BF=2,
    ∵OD∥BC,
    ∴△EFB∽△EDO,
    ∴,即,
    ∴EB=,
    ∴EF=.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、中位线定理、三角函数的应用及相似三角形的判定与性质等知识点.
    21、(1)m≤1;(2)3≤m≤1.
    【解析】
    试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;
    (2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.
    试题解析:
    (1)根据题意得△=(-6)2-1(2m+1)≥0,
    解得m≤1;
    (2)根据题意得x1+x2=6,x1x2=2m+1,
    而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20, 解得m≥3,
    而m≤1,所以m的范围为3≤m≤1.
    22、见解析
    【解析】
    (1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;
    (2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值.
    【详解】
    (1)把,代入得

    解得.
    ∴这个二次函数解析式为.
    (2)∵抛物线对称轴为直线,
    ∴的坐标为,
    ∴,
    ∴.
    【点睛】
    本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.
    23、(1);(2).
    【解析】
    (1)根据题意和图形,可以求得顾客选择方式一,享受优惠的概率;
    (2)根据题意可以画出相应的树状图,从而可以求得相应的概率.
    【详解】
    解:(1)由题意可得,
    顾客选择方式一,则享受优惠的概率为:,
    故答案为:;
    (2)树状图如下图所示,

    则顾客享受折上折优惠的概率是:,
    即顾客享受折上折优惠的概率是.
    【点睛】
    本题考查列表法与树状图法,解答本题的关键是明确题意,列出相应的树状图,求出相应的概率.
    24、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
    【解析】
    (1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
    (2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
    (3)由题得出tanBAO=,分情况讨论求得F,H坐标.
    【详解】
    (1)把点、代入得,
    解得,,
    ∴抛物线的解析式为.
    (2)由得,∴顶点的坐标为,
    把代入得解得,∴直线解析式为,
    设点,代入得,∴得,
    设点,代入得,∴得,
    由于直线与轴、轴分别交于点、
    ∴易得、,
    ∴,
    ∴,∵点在直线上,
    ∴,
    ∴,即,
    ∵,
    ∴以点为圆心,半径长为4的圆与直线相离.
    (3)点、的坐标分别为、或、或、.
    C(-1,-1),A(0,6),B(1,3)
    可得tanBAO=,
    情况1:tanCF1M= = , CF1=9,
    M F1=6,H1F1=5, F1(8,8),H1(3,3);
    情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
    情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
    【点睛】
    本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
    25、(1)见解析;(2)
    【解析】
    (1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
    (2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴,,,
    ∵点E、F分别是BC、AD的中点,
    ∴,,
    ∴,
    在和中

    ∴≌();
    (2)作于H,

    ∵四边形ABCD是平行四边形,
    ∴,,
    ∵点E、F分别是BC、AD的中点,,
    ∴,,
    ∴,,
    ∴四边形AECF是平行四边形,
    ∵,
    ∴四边形AECF是菱形,
    ∴,
    ∵,
    ∴,
    即是等边三角形,

    由勾股定理得:,
    ∴四边形AECF的面积是.
    【点睛】
    本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
    26、(1)AC与⊙O相切,证明参见解析;(2).
    【解析】
    试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.
    试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.

    考点:1.切线的判定;2.解直角三角形.
    27、 (1) 1;(1) ≤m<.
    【解析】
    (1)在Rt△ABP中利用勾股定理即可解决问题;
    (1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    【详解】
    解:(1):(1)如图1中,设PD=t.则PA=5-t.

    ∵P、B、E共线,
    ∴∠BPC=∠DPC,
    ∵AD∥BC,
    ∴∠DPC=∠PCB,
    ∴∠BPC=∠PCB,
    ∴BP=BC=5,
    在Rt△ABP中,∵AB1+AP1=PB1,
    ∴31+(5-t)1=51,
    ∴t=1或9(舍弃),
    ∴t=1时,B、E、P共线.
    (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
    作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3

    易证四边形EMCQ是矩形,
    ∴CM=EQ=1,∠M=90°,
    ∴EM=,
    ∵∠DAC=∠EDM,∠ADC=∠M,
    ∴△ADC∽△DME,


    ∴AD=,
    如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3

    在Rt△ECQ中,QC=DM=,
    由△DME∽△CDA,

    ∴,
    ∴AD=,
    综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
    【点睛】
    本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.

    相关试卷

    2023年山东省青岛市西海岸新区中考数学一模试题:

    这是一份2023年山东省青岛市西海岸新区中考数学一模试题,共4页。

    2023年山东省青岛市黄岛区、西海岸新区、李沧区中考数学二模试卷(含解析):

    这是一份2023年山东省青岛市黄岛区、西海岸新区、李沧区中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省青岛市胶州市、黄岛区、西海岸新区中考数学一模试卷(含解析):

    这是一份2023年山东省青岛市胶州市、黄岛区、西海岸新区中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map