|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省临沂市莒南县中考数学四模试卷含解析
    立即下载
    加入资料篮
    2022届山东省临沂市莒南县中考数学四模试卷含解析01
    2022届山东省临沂市莒南县中考数学四模试卷含解析02
    2022届山东省临沂市莒南县中考数学四模试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临沂市莒南县中考数学四模试卷含解析

    展开
    这是一份2022届山东省临沂市莒南县中考数学四模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()
    A.个 B.个 C.个 D.个
    2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是(  )

    A. B. C. D.
    3.如果,那么代数式的值为( )
    A.1 B.2 C.3 D.4
    4.计算(﹣3)﹣(﹣6)的结果等于(  )
    A.3 B.﹣3 C.9 D.18
    5.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是  

    A. B. C. D.
    6.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    7.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为(  )
    A.8×107 B.880×108 C.8.8×109 D.8.8×1010
    8.在实数0,-π,,-4中,最小的数是( )
    A.0 B.-π C. D.-4
    9.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
    A.(5,5) B.(5,4) C.(6,4) D.(6,5)
    10.如图,已知函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,则不等式ax2+bx+>0的解集是(  )

    A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.

    12.已知AB=AC,tanA=2,BC=5,则△ABC的面积为_______________.

    13.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.

    14.某班有54名学生,所在教室有6行9列座位,用(m,n)表示第m行第n列的座位,新学期准备调整座位,设某个学生原来的座位为(m,n),如果调整后的座位为(i,j),则称该生作了平移[a,b]=[m - i,n - j],并称a+b为该生的位置数.若某生的位置数为10,则当m+n取最小值时,m•n的最大值为_____________.
    15.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.
    16.若,则= .
    三、解答题(共8题,共72分)
    17.(8分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.
    18.(8分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
    (1)求证:△ABE∽△ECM;
    (2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
    (3)当线段AM最短时,求重叠部分的面积.

    19.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)

    20.(8分)已知,关于x的方程x2﹣mx+m2﹣1=0,
    (1)不解方程,判断此方程根的情况;
    (2)若x=2是该方程的一个根,求m的值.
    21.(8分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.

    22.(10分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.

    23.(12分)如图,AB是⊙O的直径,弧CD⊥AB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E.
    (1)如图(1)连接PC、CB,求证:∠BCP=∠PED;
    (2)如图(2)过点P作⊙O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:∠APG=∠F;
    (3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求⊙O的直径AB.

    24.如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    求出不等式组的解集,根据已知求出1<≤2、3≤<4,求出2<a≤4、9≤b<12,即可得出答案.
    【详解】
    解不等式2x−a≥0,得:x≥,
    解不等式3x−b≤0,得:x≤,
    ∵不等式组的整数解仅有x=2、x=3,
    则1<≤2、3≤<4,
    解得:2<a≤4、9≤b<12,
    则a=3时,b=9、10、11;
    当a=4时,b=9、10、11;
    所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,
    故选:D.
    【点睛】
    本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a、b的值.
    2、D
    【解析】
    分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    详解:∵共6个数,大于3的有3个,
    ∴P(大于3)=.
    故选D.
    点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    3、A
    【解析】
    先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.
    【详解】
    解:∵原式=
    =
    =
    ∵3x-4y=0,
    ∴3x=4y
    原式==1
    故选:A.
    【点睛】
    本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
    4、A
    【解析】
    原式=−3+6=3,
    故选A
    5、B
    【解析】
    根据常见几何体的展开图即可得.
    【详解】
    由展开图可知第一个图形是②正方体的展开图,
    第2个图形是①圆柱体的展开图,
    第3个图形是③三棱柱的展开图,
    第4个图形是④四棱锥的展开图,
    故选B
    【点睛】
    本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
    6、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    7、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    880亿=880 0000 0000=8.8×1010,
    故选D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、D
    【解析】
    根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
    【详解】
    ∵正数大于0和一切负数,
    ∴只需比较-π和-1的大小,
    ∵|-π|<|-1|,
    ∴最小的数是-1.
    故选D.
    【点睛】
    此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
    9、B
    【解析】
    由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
    【详解】
    解:∵四边形ABCD是矩形
    ∴AB∥CD,AB=CD,AD=BC,AD∥BC,
    ∵A(1,4)、B(1,1)、C(5,1),
    ∴AB∥CD∥y轴,AD∥BC∥x轴
    ∴点D坐标为(5,4)
    故选B.
    【点睛】
    本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
    10、C
    【解析】
    首先求出P点坐标,进而利用函数图象得出不等式ax2+bx+>1的解集.
    【详解】
    ∵函数y=﹣与函数y=ax2+bx的交点P的纵坐标为1,
    ∴1=﹣,
    解得:x=﹣3,
    ∴P(﹣3,1),
    故不等式ax2+bx+>1的解集是:x<﹣3或x>1.
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P点坐标.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、46
    【解析】
    试卷分析:根据平行线的性质和平角的定义即可得到结论.
    解:∵直线a∥b,
    ∴∠3=∠1=34°,
    ∵∠BAC=100°,
    ∴∠2=180°−34°−100°=46°,

    故答案为46°.
    12、
    【解析】
    作CD⊥AB,由tanA=2,设AD=x,CD=2x,根据勾股定理AC=x,则BD=,
    然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,则S△ABC===
    【详解】
    如图作CD⊥AB,
    ∵tanA=2,设AD=x,CD=2x,
    ∴AC=x,∴BD=,
    在Rt△CBD中BC2=BD2+CD2,
    即52=4x2+,
    x2=,
    ∴S△ABC===

    【点睛】
    此题主要考查三角函数的应用,解题的关键是根据题意作出辅助线进行求解.
    13、1.
    【解析】
    解:∵平移后解析式是y=x﹣b,
    代入y=得:x﹣b=,
    即x2﹣bx=5,
    y=x﹣b与x轴交点B的坐标是(b,0),
    设A的坐标是(x,y),
    ∴OA2﹣OB2
    =x2+y2﹣b2
    =x2+(x﹣b)2﹣b2
    =2x2﹣2xb
    =2(x2﹣xb)
    =2×5=1,
    故答案为1.
    点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.
    14、36
    【解析】
    10=a+b=(m-i)+(n-j)=(m+n)-(i+j)
    所以:m+n=10+i+j
    当(m+n)取最小值时,(i+j)也必须最小,所以i和j都是2,这样才能(i+j)才能最小,因此:
    m+n=10+2=12
    也就是:当m+n=12时,m·n最大是多少?这就容易了:
    m·n<=36
    所以m·n的最大值就是36
    15、3
    【解析】
    把点(1,2)代入解析式解答即可.
    【详解】
    解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,
    解得:b=3,
    故答案为3
    【点睛】
    本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.
    16、1.
    【解析】
    试题分析:有意义,必须,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案为1.
    考点:二次根式有意义的条件.

    三、解答题(共8题,共72分)
    17、见解析,.
    【解析】
    画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解.
    【详解】
    解:画树状图为:

    共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4,
    所以两次抽取的卡片上的数字都是偶数的概率=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    18、(1)证明见解析;(2)能;BE=1或;(3)
    【解析】
    (1)证明:∵AB=AC,
    ∴∠B=∠C,
    ∵△ABC≌△DEF,
    ∴∠AEF=∠B,
    又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
    ∴∠CEM=∠BAE,
    ∴△ABE∽△ECM;
    (2)能.
    ∵∠AEF=∠B=∠C,且∠AME>∠C,
    ∴∠AME>∠AEF,
    ∴AE≠AM;
    当AE=EM时,则△ABE≌△ECM,
    ∴CE=AB=5,
    ∴BE=BC−EC=6−5=1,
    当AM=EM时,则∠MAE=∠MEA,
    ∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,
    又∵∠C=∠C,
    ∴△CAE∽△CBA,
    ∴,
    ∴CE=,
    ∴BE=6−=;
    ∴BE=1或;
    (3)解:设BE=x,
    又∵△ABE∽△ECM,
    ∴,即:,
    ∴CM=,
    ∴AM=5−CM,
    ∴当x=3时,AM最短为,
    又∵当BE=x=3=BC时,
    ∴点E为BC的中点,
    ∴AE⊥BC,
    ∴AE=,
    此时,EF⊥AC,
    ∴EM=,
    S△AEM=.
    19、(1)2;(2)宣传牌CD高(20﹣1)m.
    【解析】
    试题分析:(1)在Rt△ABH中,由tan∠BAH==i==.得到∠BAH=30°,于是得到结果BH=ABsin∠BAH=1sin30°=1×=2;
    (2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,得到DE=12,如图,过点B作BF⊥CE,垂足为F,求出BF=AH+AE=2+12,于是得到DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出CF=BF=2+12,即可求得结果.
    试题解析:解:(1)在Rt△ABH中,∵tan∠BAH==i==,∴∠BAH=30°,∴BH=ABsin∠BAH=1sin30°=1×=2.
    答:点B距水平面AE的高度BH是2米;
    (2)在Rt△ABH中,AH=AB.cos∠BAH=1.cos30°=2.在Rt△ADE中,tan∠DAE=,即tan60°=,∴DE=12,如图,过点B作BF⊥CE,垂足为F,∴BF=AH+AE=2+12,DF=DE﹣EF=DE﹣BH=12﹣2.在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴CF=BF=2+12,∴CD=CF﹣DF=2+12﹣(12﹣2)=20﹣1(米).答:广告牌CD的高度约为(20﹣1)米.

    20、(1)证明见解析;(2)m=2或m=1.
    【解析】
    (1)由△=(-m)2-4×1×(m2-1)=4>0即可得;
    (2)将x=2代入方程得到关于m的方程,解之可得.
    【详解】
    (1)∵△=(﹣m)2﹣4×1×(m2﹣1)
    =m2﹣m2+4
    =4>0,
    ∴方程有两个不相等的实数根;
    (2)将x=2代入方程,得:4﹣2m+m2﹣1=0,
    整理,得:m2﹣8m+12=0,
    解得:m=2或m=1.
    【点睛】
    本题考查了根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)将x=2代入原方程求出m值.
    21、DG∥BC,理由见解析
    【解析】
    由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.
    【详解】
    解:DG∥BC,理由如下:
    ∵CD⊥AB,EF⊥AB,
    ∴CD∥EF,
    ∴∠2=∠DCE,
    ∵∠1=∠2,
    ∴∠1=∠DCE,
    ∴DG∥BC.
    【点睛】
    本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.
    22、38+12
    【解析】
    根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
    【详解】
    ∵∠ABC=90°,AE=CE,EB=12,
    ∴EB=AE=CE=12,
    ∴AC=AE+CE=24,
    ∵在Rt△ABC中,∠CAB=30°,
    ∴BC=12,
    ∵DE⊥AC,AE=CE,
    ∴AD=DC,
    在Rt△ADE中,由勾股定理得
    ∴DC=13,
    ∴四边形ABCD的周长=AB+BC+CD+DA=
    【点睛】
    此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
    23、(1)见解析;(2)见解析;(3)AB=1
    【解析】
    (1)由垂径定理得出∠CPB=∠BCD,根据∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED即可得证;
    (2)连接OP,知OP=OB,先证∠FPE=∠FEP得∠F+2∠FPE=180°,再由∠APG+∠FPE=90得2∠APG+2∠FPE=180°,据此可得2∠APG=∠F,据此即可得证;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF,先证∠PAE=∠F,由tan∠PAE=tan∠F得,再证∠GAP=∠MPE,由sin∠GAP=sin∠MPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由∠FPE=∠PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证∠PEM=∠ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案.
    【详解】
    证明:(1)∵AB是⊙O的直径且AB⊥CD,
    ∴∠CPB=∠BCD,
    ∴∠BCP=∠BCD+∠PCD=∠CPB+∠PCD=∠PED,
    ∴∠BCP=∠PED;
    (2)连接OP,则OP=OB,

    ∴∠OPB=∠OBP,
    ∵PF是⊙O的切线,
    ∴OP⊥PF,则∠OPF=90°,
    ∠FPE=90°﹣∠OPE,
    ∵∠PEF=∠HEB=90°﹣∠OBP,
    ∴∠FPE=∠FEP,
    ∵AB是⊙O的直径,
    ∴∠APB=90°,
    ∴∠APG+∠FPE=90°,
    ∴2∠APG+2∠FPE=180°,
    ∵∠F+∠FPE+∠PEF=180°,
    ∵∠F+2∠FPE=180°
    ∴2∠APG=∠F,
    ∴∠APG= ∠F;
    (3)连接AE,取AE中点N,连接HN、PN,过点E作EM⊥PF于M,

    由(2)知∠APB=∠AHE=90°,
    ∵AN=EN,
    ∴A、H、E、P四点共圆,
    ∴∠PAE=∠PHF,
    ∵PH=PF,
    ∴∠PHF=∠F,
    ∴∠PAE=∠F,
    tan∠PAE=tan∠F,
    ∴,
    由(2)知∠APB=∠G=∠PME=90°,
    ∴∠GAP=∠MPE,
    ∴sin∠GAP=sin∠MPE,
    则,
    ∴,
    ∴MF=GP,
    ∵3PF=5PG,
    ∴,
    设PG=3k,则PF=5k,MF=PG=3k,PM=2k
    由(2)知∠FPE=∠PEF,
    ∴PF=EF=5k,
    则EM=4k,
    ∴tan∠PEM=,tan∠F=,
    ∴tan∠PAE=,
    ∵PE=,
    ∴AP=k,
    ∵∠APG+∠EPM=∠EPM+∠PEM=90°,
    ∴∠APG=∠PEM,
    ∵∠APG+∠OPA=∠ABP+∠BAP=90°,且∠OAP=∠OPA,
    ∴∠APG=∠ABP,
    ∴∠PEM=∠ABP,
    则tan∠ABP=tan∠PEM,即,
    ∴,
    则BP=3k,
    ∴BE=k=2,
    则k=2,
    ∴AP=3、BP=6,
    根据勾股定理得,AB=1.
    【点睛】
    本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点.
    24、见解析,
    【解析】
    要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
    【详解】
    证明:由折叠得:BC=EC,∠B=∠AEC,
    ∵矩形ABCD,
    ∴BC=AD,∠B=∠ADC=90°,
    ∴EC=DA,∠AEC=∠ADC=90°,
    又∵∠AFD=∠CFE,
    ∴△ADF≌△CEF (AAS)
    ∴∠DAE=∠ECD.
    【点睛】
    本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.

    相关试卷

    2024年山东省临沂市莒南县中考数学一模试卷(含解析): 这是一份2024年山东省临沂市莒南县中考数学一模试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省临沂市莒南县中考数学二模试题(原卷版+解析版): 这是一份2024年山东省临沂市莒南县中考数学二模试题(原卷版+解析版),文件包含2024年山东省临沂市莒南县中考数学二模试题原卷版docx、2024年山东省临沂市莒南县中考数学二模试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    2023年山东省临沂市莒南县中考数学二模试卷-普通用卷: 这是一份2023年山东省临沂市莒南县中考数学二模试卷-普通用卷,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map