2022届山西省运城中考四模数学试题含解析
展开
这是一份2022届山西省运城中考四模数学试题含解析,共18页。试卷主要包含了计算的结果是,计算36÷,6的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.两个一次函数,,它们在同一直角坐标系中的图象大致是( )A. B. C. D.2.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为( )A. B. C. D.3.计算(x-2)(x+5)的结果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-104.到三角形三个顶点的距离相等的点是三角形( )的交点.A.三个内角平分线 B.三边垂直平分线C.三条中线 D.三条高5.计算36÷(﹣6)的结果等于( )A.﹣6 B.﹣9 C.﹣30 D.66.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为 A. B. C. D.7.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )A.4 B.3 C.2 D.8.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于( )A.8 B.4 C.12 D.169.6的绝对值是( )A.6 B.﹣6 C. D.10.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为( )A.2m B. m C.3m D.6m二、填空题(共7小题,每小题3分,满分21分)11.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为 12.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.13.如图,已知AB∥CD,若,则=_____.14.如图,Rt△ABC 中,∠C=90° , AB=10,,则AC的长为_______ .15.我们知道方程组的解是,现给出另一个方程组,它的解是____.16.已知一个斜坡的坡度,那么该斜坡的坡角的度数是______.17.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.三、解答题(共7小题,满分69分)18.(10分)解方程:2(x-3)=3x(x-3).19.(5分)解不等式组并写出它的所有整数解.20.(8分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.21.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.22.(10分)如图,,,,,交于点.求的值.23.(12分)如图1,在圆中,垂直于弦,为垂足,作,与的延长线交于.(1)求证:是圆的切线;(2)如图2,延长,交圆于点,点是劣弧的中点,,,求的长 .24.(14分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
所以,a、b异号,
所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
B选项符合,
D选项,a、b都经过第二、四象限,
所以,两直线都与y轴负半轴相交,不符合.
故选:B.【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.2、A【解析】
连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.【详解】连接BD,∵四边形ABCD为矩形,∴BD过圆心O,∵∠BDC=∠BPC(圆周角定理)∴cos∠BDC=cos∠BPC∵BD为直径,∴∠BCD=90°,∵=,∴设DC为x,则BC为2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.3、C【解析】
根据多项式乘以多项式的法则进行计算即可.【详解】 故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.4、B【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答.解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选B.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键.5、A【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1. 故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.6、B【解析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.7、B【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2, ),∵AC//BD// y轴,∴C(1,K),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD= (-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+ (-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.8、A【解析】
∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.9、A【解析】试题分析:1是正数,绝对值是它本身1.故选A.考点:绝对值.10、C【解析】
依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边. 二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴考点:平行线分线段成比例.12、40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.13、【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB∥CD,∴△AOB∽△COD,∴,故答案为.【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.14、8【解析】
在Rt△ABC中,cosB=,AB=10,可求得BC,再利用勾股定理即可求AC的长.【详解】∵Rt△ABC中,∠C=90°,AB=10∴cosB=,得BC=6由勾股定理得BC=故答案为8.【点睛】此题主要考查锐角三角函数在直角三形中的应用及勾股定理.15、【解析】
观察两个方程组的形式与联系,可得第二个方程组中,解之即可.【详解】解:由题意得,解得.故答案为:.【点睛】本题考查了二元一次方程组的解,用整体代入法解决这种问题比较方便.16、【解析】
坡度=坡角的正切值,据此直接解答.【详解】解:∵,∴坡角=30°.【点睛】此题主要考查学生对坡度及坡角的理解及掌握.17、①③④【解析】
由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵M、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质. 三、解答题(共7小题,满分69分)18、.【解析】
先进行移项,在利用因式分解法即可求出答案.【详解】,移项得:,整理得:,或,解得:或.【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键.19、不等式组的整数解有﹣1、0、1.【解析】
先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】,解不等式①可得,x>-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.20、(2)见解析;(2)k<2.【解析】
(2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】(2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,∴方程总有两个实数根.(2) ∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,∴x=2,x=k+2.∵方程有一根小于2,∴k+2<2,解得:k<2,∴k的取值范围为k<2.【点睛】此题考查根的判别式,解题关键在于掌握运算公式.21、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.解答:解:如图,OE⊥AB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.22、【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.23、(1)详见解析;(2)【解析】
(1)连接OA,利用切线的判定证明即可;
(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【详解】解:(1)如图,连结OA,
∵OA=OB,OC⊥AB,
∴∠AOC=∠BOC,
又∠BAD=∠BOC,
∴∠BAD=∠AOC
∵∠AOC+∠OAC=90°,
∴∠BAD+∠OAC=90°,
∴OA⊥AD,
即:直线AD是⊙O的切线;
(2)分别连结OP、PE、AE,OP交AE于F点,
∵BE是直径,
∴∠EAB=90°,
∴OC∥AE,
∵OB=,
∴BE=13
∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=-=4
在直角△PEF中,FP=4,EF=6,PE2=16+36=52,
在直角△PEB中,BE=13,PB2=BE2-PE2,
PB==3.【点睛】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.24、(1)答案见解析;(2).【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.试题解析:(1)证明:连结OD∵OD=OB∴∠ODB=∠DBO又AB=AC∴∠DBO=∠C∴∠ODB =∠C∴OD ∥AC又DE⊥AC∴DE ⊥OD∴EF是⊙O的切线.(2)∵AB是直径 ∴∠ADB=90 °∴∠ADC=90 °即∠1+∠2=90 °又∠C+∠2=90 °∴∠1=∠C∴∠1 =∠3∴∴∴AD=8在Rt△ADB中,AB=10∴BD=6在又Rt△AED中,∴设BF=x∵OD ∥AE∴△ODF∽△AEF∴ ,即,解得:x=
相关试卷
这是一份2023年山西省运城市中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山西省运城市新绛县2021-2022学年中考数学四模试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2022年山西省运城市中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。