开学活动
搜索
    上传资料 赚现金

    2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析

    2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析第1页
    2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析第2页
    2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析

    展开

    这是一份2022届山西省太原市杏花岭区育英中学中考数学押题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知二次函数的与的不符对应值如下表:
















    且方程的两根分别为,,下面说法错误的是( ).
    A., B.
    C.当时, D.当时,有最小值
    2.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是

    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    3.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为(  )
    A.28×109 B.2.8×108 C.2.8×109 D.2.8×1010
    4.如图,在平行四边形ABCD中,都不一定 成立的是(  )
    ①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.

    A.①和④ B.②和③ C.③和④ D.②和④
    5.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=( )

    A.9 B.10 C.12 D.13
    6.对于代数式ax2+bx+c(a≠0),下列说法正确的是( )
    ①如果存在两个实数p≠q,使得ap2+bp+c=aq2+bq+c,则a+bx+c=a(x-p)(x-q)
    ②存在三个实数m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c
    ③如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    ④如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c
    A.③ B.①③ C.②④ D.①③④
    7.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
    A.3 B.4 C.6 D.8
    8.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )

    A. B.
    C. D.
    9.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为(  )
    A.3 B. C. D.
    10.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有(  )

    A.3块 B.4块 C.6块 D.9块
    11.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    12.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
    ①;
    ②当0<x<3时,;
    ③如图,当x=3时,EF=;
    ④当x>0时,随x的增大而增大,随x的增大而减小.
    其中正确结论的个数是( )

    A.1 B.2 C.3 D.4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AB是半圆O的直径,E是半圆上一点,且OE⊥AB,点C为的中点,则∠A=__________°.

    14.若关于x的方程的解是正数,则m的取值范围是____________________
    15.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
    16.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.

    17.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.

    18.计算: 7+(-5)=______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
    20.(6分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
    如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

    (1)当x为何值时,OP∥AC;
    (2)求y与x之间的函数关系式,并确定自变量x的取值范围;
    (3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
    21.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
    (1)按约定,“某顾客在该天早餐得到两个鸡蛋”是   事件(填“随机”、“必然”或“不可能”);
    (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
    22.(8分)在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,P为AC延长线上一点,且∠PBC=∠BAC,连接DE,BE.
    (1)求证:BP是⊙O的切线;
    (2)若sin∠PBC=,AB=10,求BP的长.

    23.(8分)解不等式组
    请结合题意填空,完成本题的解答.
    (I)解不等式(1),得   ;
    (II)解不等式(2),得   ;
    (III)把不等式①和②的解集在数轴上表示出来:
    (IV)原不等式组的解集为   .

    24.(10分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
    (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
    (2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

    25.(10分)解不等式 ,并把它的解集表示在数轴上.

    26.(12分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
    (1)求m,n的值;
    (2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.

    27.(12分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.

    (1)求观测点B到航线的距离;
    (2)求该轮船航行的速度(结果精确到0.1km/h).
    (参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.
    【详解】
    A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.
    【点睛】
    此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.
    2、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.

    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    3、D
    【解析】
    根据科学计数法的定义来表示数字,选出正确答案.
    【详解】
    解:把一个数表示成a(1≤a0,则的图象和x轴必有两个不同的交点,所以此时一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c,故③在结论正确;
    (4)如果ac>0,则b2-4ac的值的正负无法确定,此时的图象与x轴的交点情况无法确定,所以④中结论不一定成立.
    综上所述,四种说法中正确的是③.
    故选A.
    7、C
    【解析】
    根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
    【详解】
    ⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
    则这个正n边形的中心角是60°,

    n的值为6,
    故选:C
    【点睛】
    考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
    8、D
    【解析】
    找到从正面看所得到的图形即可,注意所有看到的棱都应表现在主视图中.
    【详解】
    解:从正面看第一层是二个正方形,第二层是左边一个正方形.
    故选A.
    【点睛】
    本题考查了简单组合体的三视图的知识,解题的关键是了解主视图是由主视方向看到的平面图形,属于基础题,难度不大.
    9、A
    【解析】
    【分析】根据锐角三角函数的定义求出即可.
    【详解】∵在Rt△ABC中,∠C=90°,AC=1,BC=3,
    ∴∠A的正切值为=3,
    故选A.
    【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.
    10、B
    【解析】
    分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.
    解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.
    故选B.
    11、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.
    12、C
    【解析】
    试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;
    ∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;
    当x=3时,,,即EF==,选项③正确;
    当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.
    考点:反比例函数与一次函数的交点问题.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、22.5
    【解析】
    连接半径OC,先根据点C为的中点,得∠BOC=45°,再由同圆的半径相等和等腰三角形的性质得:∠A=∠ACO=×45°,可得结论.
    【详解】
    连接OC,
    ∵OE⊥AB,
    ∴∠EOB=90°,
    ∵点C为的中点,
    ∴∠BOC=45°,
    ∵OA=OC,
    ∴∠A=∠ACO=×45°=22.5°,
    故答案为:22.5°.
    【点睛】
    本题考查了圆周角定理与等腰三角形的性质.解题的关键是注意掌握数形结合思想的应用.
    14、m0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m

    相关试卷

    2023-2024学年山西省太原市杏花岭区育英中学数学九年级第一学期期末质量跟踪监视模拟试题含答案:

    这是一份2023-2024学年山西省太原市杏花岭区育英中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。

    2023-2024学年山西省太原市杏花岭区育英中学数学八上期末质量跟踪监视试题含答案:

    这是一份2023-2024学年山西省太原市杏花岭区育英中学数学八上期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列各点中,位于第二象限的是,数字用科学记数法表示为等内容,欢迎下载使用。

    山西省太原市杏花岭区育英中学2022-2023学年七下数学期末经典模拟试题含答案:

    这是一份山西省太原市杏花岭区育英中学2022-2023学年七下数学期末经典模拟试题含答案,共7页。试卷主要包含了下列图形中,第条线段组成.,一元二次方程的根是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map