终身会员
搜索
    上传资料 赚现金
    2022届山东省沂水四十里中学中考数学仿真试卷含解析
    立即下载
    加入资料篮
    2022届山东省沂水四十里中学中考数学仿真试卷含解析01
    2022届山东省沂水四十里中学中考数学仿真试卷含解析02
    2022届山东省沂水四十里中学中考数学仿真试卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省沂水四十里中学中考数学仿真试卷含解析

    展开
    这是一份2022届山东省沂水四十里中学中考数学仿真试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列解方程去分母正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.估计5﹣的值应在(  )
    A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
    2.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:
    鞋的尺码/cm
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    3
    3
    6
    2
    则这15双鞋的尺码组成的一组数据中,众数和中位数分别为(  )
    A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,24
    3.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(   )
    A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
    4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
    A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
    5.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:
    ①当G1与G2有公共点时,y1随x增大而减小;
    ②当G1与G2没有公共点时,y1随x增大而增大;
    ③当k=2时,G1与G2平行,且平行线之间的距离为.
    下列选项中,描述准确的是(  )
    A.①②正确,③错误 B.①③正确,②错误
    C.②③正确,①错误 D.①②③都正确
    6.下列解方程去分母正确的是( )
    A.由,得2x﹣1=3﹣3x
    B.由,得2x﹣2﹣x=﹣4
    C.由,得2y-15=3y
    D.由,得3(y+1)=2y+6
    7.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请个队参赛,则满足的关系式为()
    A. B. C. D.
    8.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:
    次序
    第一次
    第二次
    第三次
    第四次
    第五次
    甲命中的环数(环)
    6
    7
    8
    6
    8
    乙命中的环数(环)
    5
    10
    7
    6
    7
    根据以上数据,下列说法正确的是( )
    A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同
    C.甲、乙成绩的众数相同 D.甲的成绩更稳定
    9.若正多边形的一个内角是150°,则该正多边形的边数是( )
    A.6 B.12 C.16 D.18
    10.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )

    A.12 B.16 C.18 D.24
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.计算(﹣3)+(﹣9)的结果为______.
    12.请写出一个比2大且比4小的无理数:________.
    13.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为_____.

    14.函数y=+中,自变量x的取值范围是_____.
    15.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
    16.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.
    三、解答题(共8题,共72分)
    17.(8分)计算:(-1)-1-++|1-3|
    18.(8分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).

    19.(8分)已知动点P以每秒2 cm的速度沿图(1)的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图(2)中的图象表示.若AB=6 cm,试回答下列问题:

    (1)图(1)中的BC长是多少?
    (2)图(2)中的a是多少?
    (3)图(1)中的图形面积是多少?
    (4)图(2)中的b是多少?
    20.(8分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
    (1)求该抛物线的解析式;
    (2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
    (3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
    (4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

    21.(8分)如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,若 AB,求证:四边形 ABCD 是正方形

    22.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧的中点,AE与BC交于点F,∠C=2∠EAB.
    求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.
    23.(12分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.

    (1)若∠FGB=∠FBG,求证:BF是⊙O的切线;
    (2)若tan∠F=,CD=a,请用a表示⊙O的半径;
    (3)求证:GF2﹣GB2=DF•GF.
    24.如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),
    第一次变化:从左边小桶中拿出两个小球放入中间小桶中;
    第二次变化:从右边小桶中拿出一个小球放入中间小桶中;
    第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.
    (1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;
    (2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);
    (3)求第三次变化后中间小桶中有多少个小球?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    先化简二次根式,合并后,再根据无理数的估计解答即可.
    【详解】
    5﹣=,
    ∵49<54<64,
    ∴7<<8,
    ∴5﹣的值应在7和8之间,
    故选C.
    【点睛】
    本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
    2、A
    【解析】
    【分析】根据众数和中位数的定义进行求解即可得.
    【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,
    这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,
    故选A.
    【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.
    3、C
    【解析】
    【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.
    【详解】设每个小箱子装洗衣粉x千克,由题意得:
    4x+2=36,
    解得:x=8.5,
    即每个小箱子装洗衣粉8.5千克,
    故选C.
    【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键.
    4、B
    【解析】
    试题分析:“960万”用科学记数法表示为9.6×106,故选B.
    考点:科学记数法—表示较大的数.
    5、D
    【解析】
    画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.
    【详解】
    解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,

    N(﹣1,2),Q(2,7)为G2的两个临界点,
    易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),
    直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;
    当G1与G2没有公共点时,分三种情况:
    一是直线MN,但此时k=0,不符合要求;
    二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;
    三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;
    当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,
    ∴PM=2PN,
    由勾股定理得:PN2+PM2=MN2
    ∴(2PN)2+(PN)2=9,
    ∴PN=,
    ∴PM=.
    故③正确.
    综上,故选:D.
    【点睛】
    本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.
    6、D
    【解析】
    根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
    【详解】
    A.由,得:2x﹣6=3﹣3x,此选项错误;
    B.由,得:2x﹣4﹣x=﹣4,此选项错误;
    C.由,得:5y﹣15=3y,此选项错误;
    D.由,得:3( y+1)=2y+6,此选项正确.
    故选D.
    【点睛】
    本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
    7、A
    【解析】
    根据应用题的题目条件建立方程即可.
    【详解】
    解:由题可得:
    即:
    故答案是:A.
    【点睛】
    本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.
    8、D
    【解析】
    根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.
    【详解】
    把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;
    把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;
    ∴甲、乙成绩的中位数相同,故选项B错误;
    根据表格中数据可知,甲的众数是8环,乙的众数是7环,
    ∴甲、乙成绩的众数不同,故选项C错误;
    甲命中的环数的平均数为:(环),
    乙命中的环数的平均数为:(环),
    ∴甲的平均数等于乙的平均数,故选项A错误;
    甲的方差=[(6−7)2+(7−7)2+(8−7)2+(6−7)2+(8−7)2]=0.8;
    乙的方差=[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2]=2.8,
    因为2.8>0.8,
    所以甲的稳定性大,故选项D正确.
    故选D.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.
    9、B
    【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
    故选B.
    10、A
    【解析】
    解:∵四边形ABCD为矩形,
    ∴AD=BC=10,AB=CD=8,
    ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,
    ∴AF=AD=10,EF=DE,
    在Rt△ABF中,
    ∵BF==6,
    ∴CF=BC-BF=10-6=4,
    ∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.
    故选A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、-1
    【解析】
    试题分析:利用同号两数相加的法则计算即可得原式=﹣(3+9)=﹣1,
    故答案为﹣1.
    12、(或)
    【解析】
    利用完全平方数和算术平方根对无理数的大小进行估算,然后找出无理数即可
    【详解】
    设无理数为,,所以x的取值在4~16之间都可,故可填
    【点睛】
    本题考查估算无理数的大小,能够判断出中间数的取值范围是解题关键
    13、1.
    【解析】
    根据立体图形画出它的主视图,再求出面积即可.
    【详解】
    主视图如图所示,

    ∵主视图是由1个棱长均为1的正方体组成的几何体,
    ∴主视图的面积为1×12=1.
    故答案为:1.
    【点睛】
    本题是简单组合体的三视图,主要考查了立体图的左视图,解本题的关键是画出它的左视图.
    14、x≥﹣2且x≠1
    【解析】
    分析:
    根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.
    详解:
    ∵有意义,
    ∴ ,解得:且.
    故答案为:且.
    点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.
    15、1
    【解析】
    底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
    【详解】
    试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.
    ②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.
    故填1.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
    16、相离
    【解析】
    设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.
    【详解】
    设圆O的半径是r,
    则πr2=9π,
    ∴r=3,
    ∵点0到直线l的距离为π,
    ∵3<π,
    即:r<d,
    ∴直线l与⊙O的位置关系是相离,
    故答案为:相离.
    【点睛】
    本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.

    三、解答题(共8题,共72分)
    17、-1
    【解析】
    试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.
    试题解析:原式=-1-=-1.
    18、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
    【解析】
    如图,过A作AF⊥CD于点F,

    在Rt△BCD中,∠DBC=60°,BC=30m,
    ∵=tan∠DBC,
    ∴CD=BC•tan60°=30m,
    ∴乙建筑物的高度为30m;
    在Rt△AFD中,∠DAF=45°,
    ∴DF=AF=BC=30m,
    ∴AB=CF=CD﹣DF=(30﹣30)m,
    ∴甲建筑物的高度为(30﹣30)m.
    19、 (1)8cm(2)24cm2(3)60cm2(4) 17s
    【解析】
    (1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;
    (2)由(1)可得BC的长,又由AB=6cm,可以计算出△ABP的面积,计算可得a的值;
    (3)分析图形可得,甲中的图形面积等于AB×AF-CD×DE,根据图象求出CD和DE的长,代入数据计算可得答案,
    (4)计算BC+CD+DE+EF+FA的长度,又由P的速度,计算可得b的值.
    【详解】
    (1)由图象知,当t由0增大到4时,点P由B C,∴BC==4×2=8(㎝) ;
    (2) a=S△ABC=×6×8=24(㎝2) ;
    (3) 同理,由图象知 CD=4㎝,DE=6㎝,则EF=2㎝,AF=14㎝
    ∴图1中的图象面积为6×14-4×6=60㎝2 ;
    (4) 图1中的多边形的周长为(14+6)×2=40㎝ b=(40-6)÷2=17秒.
    20、(1)y=﹣;(1)点K的坐标为(,0);(2)点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    【解析】
    试题分析:(1)把A、C两点坐标代入抛物线解析式可求得a、c的值,可求得抛物线解析;
    (1)可求得点C关于x轴的对称点C′的坐标,连接C′N交x轴于点K,再求得直线C′K的解析式,可求得K点坐标;
    (2)过点E作EG⊥x轴于点G,设Q(m,0),可表示出AB、BQ,再证明△BQE≌△BAC,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;
    (4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.
    试题解析:(1)∵抛物线经过点C(0,4),A(4,0),
    ∴,解得 ,
    ∴抛物线解析式为y=﹣ x1+x+4;
    (1)由(1)可求得抛物线顶点为N(1, ),
    如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,

    设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得 ,解得 ,
    ∴直线C′N的解析式为y=x-4 ,
    令y=0,解得x= ,
    ∴点K的坐标为(,0);
    (2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,

    由﹣ x1+x+4=0,得x1=﹣1,x1=4,
    ∴点B的坐标为(﹣1,0),AB=6,BQ=m+1,
    又∵QE∥AC,∴△BQE≌△BAC,
    ∴ ,即 ,解得EG= ;
    ∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)
    = =-(m-1)1+2 .
    又∵﹣1≤m≤4,
    ∴当m=1时,S△CQE有最大值2,此时Q(1,0);
    (4)存在.在△ODF中,
    (ⅰ)若DO=DF,∵A(4,0),D(1,0),
    ∴AD=OD=DF=1.
    又在Rt△AOC中,OA=OC=4,
    ∴∠OAC=45°.
    ∴∠DFA=∠OAC=45°.
    ∴∠ADF=90°.
    此时,点F的坐标为(1,1).
    由﹣ x1+x+4=1,得x1=1+ ,x1=1﹣.
    此时,点P的坐标为:P1(1+,1)或P1(1﹣,1);
    (ⅱ)若FO=FD,过点F作FM⊥x轴于点M.

    由等腰三角形的性质得:OM=OD=1,
    ∴AM=2.
    ∴在等腰直角△AMF中,MF=AM=2.
    ∴F(1,2).
    由﹣ x1+x+4=2,得x1=1+,x1=1﹣.
    此时,点P的坐标为:P2(1+,2)或P4(1﹣,2);
    (ⅲ)若OD=OF,
    ∵OA=OC=4,且∠AOC=90°.
    ∴AC=4.
    ∴点O到AC的距离为1.
    而OF=OD=1<1,与OF≥1矛盾.
    ∴在AC上不存在点使得OF=OD=1.
    此时,不存在这样的直线l,使得△ODF是等腰三角形.
    综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).
    点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.
    21、详见解析.
    【解析】
    四边形ABCD是正方形,利用已知条件先证明四边形ABCD是平行四边形,再证明四边形ABCD是矩形,再根据对角线垂直的矩形是正方形即可证明四边形ABCD是正方形.
    【详解】
    证明:在四边形ABCD中,OA=OC,OB=OD,
    ∴四边形ABCD是平行四边形,
    ∵OA=OB=OC=OD,
    又∵AC=AO+OC,BD=OB+DO,
    ∴AC=BD,
    ∴平行四边形是矩形,
    在△AOB中,,

    ∴△AOB是直角三角形,即AC⊥BD,
    ∴矩形ABCD是正方形.
    【点睛】
    本题考查了平行四边形的判定、矩形的判定、正方形的判定以及勾股定理的运用和勾股定理的逆定理的运用,题目的综合性很强.
    22、(1)证明见解析(2)2
    【解析】
    (1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是⊙O的切线;
    先求出的长,用勾股定理即可求出.
    【详解】
    解:(1)证明:连结AD,如图,
    ∵E是的中点,∴


    ∵AB是⊙O的直径,∴

    ∴ 即
    ∴AC是⊙O的切线;

    (2)∵

    ∵,

    【点睛】
    本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.
    23、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.
    (2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=CD=a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.
    (3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.
    【详解】
    解:(1)证明:∵OA=OB,
    ∴∠OAB=∠OBA.
    ∵OA⊥CD,
    ∴∠OAB+∠AGC=90°.
    又∵∠FGB=∠FBG,∠FGB=∠AGC,
    ∴∠FBG+∠OBA=90°,即∠OBF=90°.
    ∴OB⊥FB.
    ∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.
    (2)∵AC∥BF,
    ∴∠ACF=∠F.
    ∵CD=a,OA⊥CD,
    ∴CE=CD=a.
    ∵tan∠F=,
    ∴,
    即.
    解得.
    连接OC,设圆的半径为r,则,

    在Rt△OCE中,,
    即,
    解得.
    (3)证明:连接BD,
    ∵∠DBG=∠ACF,∠ACF=∠F(已证),
    ∴∠DBG=∠F.
    又∵∠FGB=∠FGB,
    ∴△BDG∽△FBG.
    ∴,即GB2=DG•GF.
    ∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.
    24、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.
    【解析】
    (1)(2)根据材料中的变化方法解答;
    (3)设原来每个捅中各有a个小球,根据第三次变化方法列出方程并解答.
    【详解】
    解:(1)依题意得:(3+2)÷(3﹣2)=5
    故答案是:5;
    (2)依题意得:a+2+1=a+3;
    故答案是:(a+3)
    (3)设原来每个捅中各有a个小球,第三次从中间桶拿出x个球,
    依题意得:a﹣1+x=2a
    x=a+1
    所以 a+3﹣x=a+3﹣(a+1)=2
    答:第三次变化后中间小桶中有2个小球.
    【点睛】
    考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.

    相关试卷

    2023-2024学年山东省沂水四十里中学九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年山东省沂水四十里中学九年级数学第一学期期末质量跟踪监视试题含答案,共7页。

    2023-2024学年山东省沂水四十里中学数学八上期末质量检测模拟试题含答案: 这是一份2023-2024学年山东省沂水四十里中学数学八上期末质量检测模拟试题含答案,共6页。试卷主要包含了8的立方根是,如图,设,下列运算正确的是等内容,欢迎下载使用。

    山东省沂水四十里中学2022-2023学年七下数学期末达标检测模拟试题含答案: 这是一份山东省沂水四十里中学2022-2023学年七下数学期末达标检测模拟试题含答案,共7页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map