2022届山西省长治市壶关县中考数学考试模拟冲刺卷含解析
展开
这是一份2022届山西省长治市壶关县中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了在数轴上表示不等式2,对于二次函数,下列说法正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列条件中不能判定三角形全等的是( )
A.两角和其中一角的对边对应相等 B.三条边对应相等
C.两边和它们的夹角对应相等 D.三个角对应相等
2.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )
A. B. C. D.
3.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )
A.y=2x2+3 B.y=2x2﹣3
C.y=2(x+3)2 D.y=2(x﹣3)2
4.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
A.甲 B.乙 C.丙 D.丁
5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=( )
A.2.5 B.3 C.4 D.5
6.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
7.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
8.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
A. B. C. D.
9.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
10.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.
12.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
13.在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为________.
14.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=________度.
15.方程3x2﹣5x+2=0的一个根是a,则6a2﹣10a+2=_____.
16.如图,已知O为△ABC内一点,点D、E分别在边AB和AC上,且,DE∥BC,设、,那么______(用、表示).
三、解答题(共8题,共72分)
17.(8分)一次函数y=x的图象如图所示,它与二次函数y=ax2-4ax+c的图象交于A、B两点(其中点A在点B的左侧),与这个二次函数图象的对称轴交于点C.
(1)求点C的坐标;
(2)设二次函数图象的顶点为D.
①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;
②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.
18.(8分)如下表所示,有A、B两组数:
第1个数
第2个数
第3个数
第4个数
……
第9个数
……
第n个数
A组
﹣6
﹣5
﹣2
……
58
……
n2﹣2n﹣5
B组
1
4
7
10
……
25
……
(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
19.(8分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离(结果精确到1cm).
20.(8分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名.
21.(8分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:
(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;
(2)把条形统计图补充完整;
(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.
22.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
23.(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)将上面的条形统计图补充完整;
(2)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?
(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?
24.我市某中学决定在八年级阳光体育“大课间”活动中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)将两个统计图补充完整;
(3)若调查到喜欢“立定跳远”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
解:A、符合AAS,能判定三角形全等;
B、符合SSS,能判定三角形全等;;
C、符合SAS,能判定三角形全等;
D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
故选D.
2、A
【解析】
试题解析:连接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分别与⊙O相切于E,F,G三点,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四边形AFOE,FBGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切线,
∴DN=DE=3,MN=MG,
∴CM=5-2-MN=3-MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3-NM)2+42,
∴NM=,
∴DM=3+=,
故选B.
考点:1.切线的性质;3.矩形的性质.
3、C
【解析】
按照“左加右减,上加下减”的规律,从而选出答案.
【详解】
y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.
【点睛】
本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.
4、D
【解析】
根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
【详解】
∵0.45<0.51<0.62,
∴丁成绩最稳定,
故选D.
【点睛】
此题主要考查了方差,关键是掌握方差越小,稳定性越大.
5、A
【解析】
先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
【详解】
∵∠ACB=90°,D为AB中点
∴CD=
∵点E、F分别为BC、BD中点
∴.
故答案为:A.
【点睛】
本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
6、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
7、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
8、D
【解析】
连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
【详解】
连接CD,如图:
,CD=,AC=
∵,∴∠ADC=90°,∴tan∠BAC==.
故选D.
【点睛】
本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
9、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
10、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、30
【解析】
试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.
考点:折叠图形的性质
12、。
【解析】
试题分析:如图,连接EG,
∵,∴设,则。
∵点E是边CD的中点,∴。
∵△ADE沿AE折叠后得到△AFE,
∴。
易证△EFG≌△ECG(HL),∴。∴。
∴在Rt△ABG中,由勾股定理得: ,即。
∴。
∴(只取正值)。
∴。
13、 (-5,4)
【解析】
试题解析:由于图形平移过程中,对应点的平移规律相同,
由点A到点A'可知,点的横坐标减6,纵坐标加3,
故点B'的坐标为 即
故答案为:
14、1
【解析】
利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC为等腰直角三角形,从而得到∠C的度数.
【详解】
解:∵AB为直径,
∴∠ADB=90°,
∵BC为切线,
∴AB⊥BC,
∴∠ABC=90°,
∵AD=CD,
∴△ABC为等腰直角三角形,
∴∠C=1°.
故答案为1.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质.
15、-1
【解析】
根据一元二次方程的解的定义,将x=a代入方程3x1-5x+1=0,列出关于a的一元二次方程,通过变形求得3a1-5a的值后,将其整体代入所求的代数式并求值即可.
【详解】
解:∵方程3x1-5x+1=0的一个根是a,
∴3a1-5a+1=0,
∴3a1-5a=-1,
∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.
故答案是:-1.
【点睛】
此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.
16、
【解析】
根据,DE∥BC,结合平行线分线段成比例来求.
【详解】
∵,DE∥BC,
∴,
∴ = =.
∵,
∴
∴.
故答案为:.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
三、解答题(共8题,共72分)
17、(1)点C(1,);(1)①y=x1-x; ②y=-x1+1x+.
【解析】
试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=x求得y=,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,m) ,根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,m)(m
相关试卷
这是一份山西省蒲县2022年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了下列二次根式,最简二次根式是,下列方程中,两根之和为2的是等内容,欢迎下载使用。
这是一份山西省长治市壶关县达标名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了如果将直线l1,已知点A等内容,欢迎下载使用。
这是一份山西省兴县2022年中考数学考试模拟冲刺卷含解析,共18页。试卷主要包含了拒绝“餐桌浪费”,刻不容缓,某班7名女生的体重等内容,欢迎下载使用。