2022届山东省潍坊诸城市达标名校中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.下列各式中,计算正确的是 ( )
A. B.
C. D.
2.下列判断正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
3.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
4.一个几何体的三视图如图所示,则该几何体的表面积是( )
A.24+2π B.16+4π C.16+8π D.16+12π
5.如图所示的四边形,与选项中的一个四边形相似,这个四边形是( )
A. B. C. D.
6.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )
A.35° B.25° C.30° D.15°
7.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )
A.20° B.40° C.60° D.80°
8.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
9.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:
每天加工零件数
4
5
6
7
8
人数
3
6
5
4
2
每天加工零件数的中位数和众数为( )
A.6,5 B.6,6 C.5,5 D.5,6
10.如果菱形的一边长是8,那么它的周长是( )
A.16 B.32 C.16 D.32
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
12.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
13.2017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_____.
14.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .
15.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为
16.方程的解为 .
三、解答题(共8题,共72分)
17.(8分)(1)问题发现
如图1,在Rt△ABC中,∠A=90°,=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接 CD.
(1)①求的值;②求∠ACD的度数.
(2)拓展探究
如图 2,在Rt△ABC中,∠A=90°,=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.
(3)解决问题
如图 3,在△ABC中,∠B=45°,AB=4,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若 PA=5,请直接写出CD的长.
18.(8分)某公司为了扩大经营,决定购进6台机器用于生产某活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲
乙
价格(万元/台)
7
5
每台日产量(个)
100
60
(1)按该公司要求可以有几种购买方案?如果该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择什么样的购买方案?
19.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
20.(8分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.
(1)求抛物线的函数表达式;
(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;
(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;
(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.
21.(8分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
22.(10分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
(1)求A、B型商品的进价;
(2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.
23.(12分)先化简,再求值:(﹣2)÷,其中x满足x2﹣x﹣4=0
24.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】
A、无法计算,故此选项错误;
B、a2•a3=a5,故此选项错误;
C、a3÷a2=a,正确;
D、(a2b)2=a4b2,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
2、C
【解析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
3、D
【解析】
试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.
解:2012年的产量为100(1+x),
2013年的产量为100(1+x)(1+x)=100(1+x)2,
即所列的方程为100(1+x)2=144,
故选D.
点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.
4、D
【解析】
根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.
【详解】
该几何体的表面积为2וπ•22+4×4+×2π•2×4=12π+16,
故选:D.
【点睛】
本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.
5、D
【解析】
根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.
【详解】
解:作AE⊥BC于E,
则四边形AECD为矩形,
∴EC=AD=1,AE=CD=3,
∴BE=4,
由勾股定理得,AB==5,
∴四边形ABCD的四条边之比为1:3:5:5,
D选项中,四条边之比为1:3:5:5,且对应角相等,
故选D.
【点睛】
本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.
6、D
【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.
【点睛】
此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
7、C
【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
【详解】
∵,,
∴,
∵,
∴,
∵,
∴,
故选C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
8、B
【解析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故选B.
【点睛】
本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
9、A
【解析】
根据众数、中位数的定义分别进行解答即可.
【详解】
由表知数据5出现了6次,次数最多,所以众数为5;
因为共有20个数据,
所以中位数为第10、11个数据的平均数,即中位数为=6,
故选A.
【点睛】
本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
10、B
【解析】
根据菱形的四边相等,可得周长
【详解】
菱形的四边相等
∴菱形的周长=4×8=32
故选B.
【点睛】
本题考查了菱形的性质,并灵活掌握及运用菱形的性质
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
12、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
13、
【解析】
首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案.
【详解】
树状图如图所示,
∴一共有9种等可能的结果;
根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,
∴选择同一种交通工具前往观看演出的概率:,
故答案为.
【点睛】
此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
14、
【解析】
让黄球的个数除以球的总个数即为所求的概率.
【详解】
解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.
故答案为:.
【点睛】
本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
15、
【解析】
试题解析:∵AH=2,HB=1,
∴AB=AH+BH=3,
∵l1∥l2∥l3,
∴
考点:平行线分线段成比例.
16、.
【解析】
试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
,经检验,是原方程的根.
三、解答题(共8题,共72分)
17、(1)1,45°;(2)∠ACD=∠B, =k;(3).
【解析】
(1)根据已知条件推出△ABP≌△ACD,根据全等三角形的性质得到PB=CD,∠ACD=∠B=45°,于是得到
根据已知条件得到△ABC∽△APD,由相似三角形的性质得到,得到 ABP∽△CAD,根据相似三角形的性质得到结论;
过A作AH⊥BC 于 H,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到根据相似三角形的性质得到 ,推出△ABP∽△CAD,根据相似三角形的性质即可得到结论.
【详解】
(1)∵∠A=90°,
∴AB=AC,
∴∠B=45°,
∵∠PAD=90°,∠APD=∠B=45°,
∴AP=AD,
∴∠BAP=∠CAD,
在△ABP 与△ACD 中,
AB=AC, ∠BAP=∠CAD,AP=AD,
∴△ABP≌△ACD,
∴PB=CD,∠ACD=∠B=45°,
∴=1,
(2)
∵∠BAC=∠PAD=90°,∠B=∠APD,
∴△ABC∽△APD,
∵∠BAP+∠PAC=∠PAC+∠CAD=90°,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴∠ACD=∠B,
(3)过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=1,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
过 A 作 AH⊥BC 于 H,
∵∠B=45°,
∴△ABH 是等腰直角三角形,
∵
∴AH=BH=4,
∵BC=12,
∴CH=8,
∴
∴PH==3,
∴PB=7,
∵∠BAC=∠PAD=,∠B=∠APD,
∴△ABC∽△APD,
∴,
∵∠BAP+∠PAC=∠PAC+∠CAD,
∴∠BAP=∠CAD,
∴△ABP∽△CAD,
∴即
∴
【点睛】
本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定
和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.
18、(1)有3种购买方案①购乙6台,②购甲1台,购乙5台,③购甲2台,购乙4台(2)购买甲种机器1台,购买乙种机器5台,
【解析】
(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台,根据买机器所耗资金不能超过34万元,即购买甲种机器的钱数+购买乙种机器的钱数≤34万元.就可以得到关于x的不等式,就可以求出x的范围.
(2)该公司购进的6台机器的日生产能力不能低于380个,就是已知不等关系:甲种机器生产的零件数+乙种机器生产的零件数≤380件.根据(1)中的三种方案,可以计算出每种方案的需要资金,从而选择出合适的方案.
【详解】
解:(1)设购买甲种机器x台(x≥0),则购买乙种机器(6-x)台
依题意,得7x+5(6-x)≤34
解这个不等式,得x≤2,即x可取0,1,2三个值.
∴该公司按要求可以有以下三种购买方案:
方案一:不购买甲种机器,购买乙种机器6台.
方案二:购买甲种机器l1台,购买乙种机器5台.
方案三:购买甲种机器2台,购买乙种机器4台
(2)根据题意,100x+60(6-x)≥380
解之得x>
由(1)得x≤2,即≤x≤2.
∴x可取1,2俩值.
即有以下两种购买方案:
购买甲种机器1台,购买乙种机器5台,所耗资金为1×7+5×5=32万元;
购买甲种机器2台,购买乙种机器4台,所耗资金为2×7+4×5=34万元.
∴为了节约资金应选择购买甲种机器1台,购买乙种机器5台,.
【点睛】
解决本题的关键是读懂题意,找到符合题意的不等关系式,正确确定各种情况,确定各种方案.
19、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.
【解析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;
(2)OC∥DF,则 即可求解;
(3)由S△ACE=S△AME﹣S△CME即可求解;
(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.
【详解】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,
即: 解得:
故函数的表达式为: ①;
(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,
∵OC∥DF,∴OF=5OA=5,
故点D的坐标为(﹣5,6),
将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:
即直线AD的表达式为:y=﹣x+1,
(3)设点E坐标为 则点M坐标为
则
∵故S△ACE有最大值,
当x=﹣2时,最大值为;
(4)存在,理由:
①当AP为平行四边形的一条边时,如下图,
设点D的坐标为
将点A向左平移2个单位、向上平移4个单位到达点P的位置,
同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,
则点Q的坐标为
将点Q的坐标代入①式并解得:
②当AP为平行四边形的对角线时,如下图,
设点Q坐标为点D的坐标为(m,n),
AP中点的坐标为(0,2),该点也是DQ的中点,
则: 即:
将点D坐标代入①式并解得:
故点D的横坐标为:或或.
【点睛】
本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.
21、A、B两种型号的空调购买价分别为2120元、2320元
【解析】
试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
解得:
答:A、B两种型号的空调购买价分别为2120元、2320元
22、(1)80,100;(2)100件,22000元;(3)答案见解析.
【解析】
(1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
(2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
(3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
【详解】
解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,
,
解得,a=80,
经检验,a=80是原分式方程的解,
∴a+20=100,
答:A、B型商品的进价分别为80元/件、100元/件;
(2)设购机A型商品x件,
80x+100(200﹣x)≤18000,
解得,x≥100,
设获得的利润为w元,
w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
∴当x=100时,w取得最大值,此时w=22000,
答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
∵50<a<70,
∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
【点睛】
本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.
23、1
【解析】
首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.
【详解】
解:(﹣2)÷
=
=x2﹣3﹣2x+2
=x2﹣2x﹣1,
∵x2﹣x﹣4=0,
∴x2﹣2x=8,
∴原式=8﹣1=1.
【点睛】
分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.
24、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
山东省潍坊市诸城市重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份山东省潍坊市诸城市重点达标名校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了不等式组的解集在数轴上可表示为,计算,下列计算正确的是,单项式2a3b的次数是,下面四个几何体等内容,欢迎下载使用。
山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析: 这是一份山东省潍坊市诸城市重点达标名校2022年中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,函数的自变量x的取值范围是等内容,欢迎下载使用。
山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析: 这是一份山东省潍坊市寒亭达标名校2021-2022学年中考数学押题卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,函数中,x的取值范围是等内容,欢迎下载使用。