2022届上海市闵行区信宏中学中考数学全真模拟试卷含解析
展开
这是一份2022届上海市闵行区信宏中学中考数学全真模拟试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.对于不等式组,下列说法正确的是( )
A.此不等式组的正整数解为1,2,3
B.此不等式组的解集为
C.此不等式组有5个整数解
D.此不等式组无解
2.估计﹣1的值在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
3.化简的结果是( )
A.﹣ B.﹣ C.﹣ D.﹣
4.如图,平面直角坐标中,点A(1,2),将AO绕点A逆时针旋转90°,点O的对应点B恰好落在双曲线y=(x>0)上,则k的值为( )
A.2 B.3 C.4 D.6
5.如果代数式有意义,则实数x的取值范围是( )
A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
6.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
7.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
8.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时, 那么下列结论成立的是( ).
A.线段EF的长逐渐增大 B.线段EF的长逐渐减少
C.线段EF的长不变 D.线段EF的长不能确定
9.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()
A.180人 B.117人 C.215人 D.257人
10.下列运算正确的是( )
A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
11.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )
A. B.
C. D.
12.如图,将一副三角板如此摆放,使得BO和CD平行,则∠AOD的度数为( )
A.10° B.15° C.20° D.25°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点.若,则的长为________.
14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为_____.
15.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
16.从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是______ .
17.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
18.一个n边形的内角和为1080°,则n=________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
20.(6分)近年来,新能源汽车以其舒适环保、节能经济的优势受到热捧,随之而来的就是新能汽车销量的急速增加,当前市场上新能漂汽车从动力上分纯电动和混合动力两种,从用途上又分为乘用式和商用式两种,据中国汽车工业协会提供的信息,2017年全年新能源乘用车的累计销量为57.9万辆,其中,纯电动乘用车销量为46.8万辆,混合动力乘用车销量为11.1万辆; 2017年全年新能源商用车的累计销量为19.8万辆,其中,纯电动商用车销量为18.4万辆,混合动力商用车销量为1.4万辆,请根据以上材料解答下列问题:
(1)请用统计表表示我国2017年新能源汽车各类车型销量情况;
(2)小颖根据上述信息,计算出2017年我国新能源各类车型总销量为77.7万辆,并绘制了“2017年我国新能源汽车四类车型销量比例”的扇形统计图,如图1,请你将该图补充完整(其中的百分数精确到0.1%);
(3)2017年我国新能源乘用车销量最高的十个城市排名情况如图2,请根据图2中信息写出这些城市新能源乘用车销售情况的特点(写出一条即可);
(4)数据显示,2018年1~3月的新能源乘用车总销量排行榜上位居前四的厂家是比亚迪、北汽、上汽、江准,参加社会实践的大学生小王想对其中两个厂家进行深入调研,他将四个完全相同的乒乓球进行编号(用“1,2,3,4”依次对应上述四个厂家),并将乒乓球放入不透明的袋子中搅匀,从中一次拿出两个乒乓球,根据乒乓球上的编号决定要调研的厂家.求小王恰好调研“比亚迪”和“江淮”这两个厂家的概率.
21.(6分)已知抛物线的开口向上顶点为P
(1)若P点坐标为(4,一1),求抛物线的解析式;
(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
22.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
当的半径为1时.
在点、、中,的“特征点”是______;
点P在直线上,若点P为的“特征点”求b的取值范围;
的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
23.(8分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
(I)当m=3时,求点A的坐标及BC的长;
(II)当m>1时,连接CA,若CA⊥CP,求m的值;
(III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.
24.(10分)解下列不等式组:
25.(10分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
26.(12分)如图,的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.
在图1中画出边上的中线;在图2中画出,使得.
27.(12分)解方程组
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
2、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
3、C
【解析】
试题解析:原式=.
故选C.
考点:二次根式的乘除法.
4、B
【解析】
作AC⊥y轴于C,ADx轴,BD⊥y轴,它们相交于D,有A点坐标得到AC=1,OC=1,由于AO绕点A逆时针旋转90°,点O的对应B点,所以相当是把△AOC绕点A逆时针旋转90°得到△ABD,根据旋转的性质得AD=AC=1,BD=OC=1,原式可得到B点坐标为(2,1),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】
作AC⊥y轴于C,AD⊥x轴,BD⊥y轴,它们相交于D,如图,∵A点坐标为(1,1),∴AC=1,OC=1.
∵AO绕点A逆时针旋转90°,点O的对应B点,即把△AOC绕点A逆时针旋转90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B点坐标为(2,1),∴k=2×1=2.
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了坐标与图形变化﹣旋转.
5、C
【解析】
根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
【详解】
由题意得,x+3≥0,x≠0,
解得x≥−3且x≠0,
故选C.
【点睛】
本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
6、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
7、C
【解析】
由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);
∵CE∥AB,
∴△ECF∽△ADF,
得,
即DF=2CF,所以CF:CD=1:3,
故选C.
【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.
8、C
【解析】
因为R不动,所以AR不变.根据三角形中位线定理可得EF= AR,因此线段EF的长不变.
【详解】
如图,连接AR,
∵E、F分别是AP、RP的中点,
∴EF为△APR的中位线,
∴EF= AR,为定值.
∴线段EF的长不改变.
故选:C.
【点睛】
本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.
9、B
【解析】
设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.
【详解】
设男生为x人,则女生有65%x人,由题意得,
x+65%x=297,
解之得
x=180,
297-180=117人.
故选B.
【点睛】
本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键.
10、B
【解析】
A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
D选项:两项不是同类项,故不能进行合并.
【详解】
A选项:a6÷a2=a4,故本选项错误;
B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
C选项:(-a)2•a3=a5,故本选项错误;
D选项:5a与2b不是同类项,不能合并,故本选项错误;
故选:B.
【点睛】
考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
11、D
【解析】
解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
当点Q在BC上时,如下图所示:
∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
12、B
【解析】
根据题意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根据平行线的性质即可解答
【详解】
根据题意可知∠AOB=∠ABO=45°,∠DOC=30°
∵BO∥CD
∴∠BOC=∠DCO=90°
∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°
故选B
【点睛】
此题考查三角形内角和,平行线的性质,解题关键在于利用平行线的性质得到角相等
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、13
【解析】
根据正方形的性质得出AD=AB,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根据AAS推出△AED≌△BFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;
【详解】
∵ABCD是正方形(已知),
∴AB=AD,∠ABC=∠BAD=90°;
又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
∴∠FBA=∠EAD(等量代换);
∵BF⊥a于点F,DE⊥a于点E,
∴在Rt△AFB和Rt△AED中,
∵,
∴△AFB≌△AED(AAS),
∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
∴EF=AF+AE=DE+BF=8+5=13.
故答案为13.
点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED≌△BFA是解此题的关键.
14、1
【解析】
作DH⊥x轴于H,如图,
当y=0时,-3x+3=0,解得x=1,则A(1,0),
当x=0时,y=-3x+3=3,则B(0,3),
∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAO+∠DAH=90°,
而∠BAO+∠ABO=90°,
∴∠ABO=∠DAH,
在△ABO和△DAH中
∴△ABO≌△DAH,
∴AH=OB=3,DH=OA=1,
∴D点坐标为(1,1),
∵顶点D恰好落在双曲线y= 上,
∴a=1×1=1.
故答案是:1.
15、2
【解析】
【分析】接把点P(a,b)代入反比例函数y=即可得出结论.
【详解】∵点P(a,b)在反比例函数y=的图象上,
∴b=,
∴ab=2,
故答案为:2.
【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
16、144°
【解析】
根据多边形内角和公式计算即可.
【详解】
解:由题知,这是一个10边形,根据多边形内角和公式:
每个内角等于.
故答案为:144°.
【点睛】
此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.
17、1
【解析】
根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
【详解】
由图可得,P0P1=1,P0P2=1,P0P3=1;
P0P4=2,P0P5=2,P0P6=2;
P0P7=3,P0P8=3,P0P9=3;
∵2018=3×672+2,
∴点P2018在正南方向上,
∴P0P2018=672+1=1,
故答案为1.
【点睛】
本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
18、1
【解析】
直接根据内角和公式计算即可求解.
【详解】
(n﹣2)•110°=1010°,解得n=1.
故答案为1.
【点睛】
主要考查了多边形的内角和公式.多边形内角和公式:.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)4.1.
【解析】
试题分析:(1)由BE∥CO,推出∠OCB=∠CBE,由OC=OB,推出∠OCB=∠OBC,可得∠CBE=∠CBO;
(2)在Rt△CDO中,求出OD,由OC∥BE,可得,由此即可解决问题;
试题解析:(1)证明:∵DE是切线,∴OC⊥DE,∵BE∥CO,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠CBE=∠CBO,∴BC平分∠ABE.
(2)在Rt△CDO中,∵DC=1,OC=0A=6,∴OD==10,∵OC∥BE,∴,∴,∴EC=4.1.
考点:切线的性质.
20、(1)统计表见解析;(2)补全图形见解析;(3)总销量越高,其个人购买量越大;
(4).
【解析】
(1)认真读题,找到题目中的相关信息量,列表统计即可;
(2)分别求出“混动乘用”和“纯电动商用”的圆心角的度数,然后补扇形图即可;
(3)根据图表信息写出一个符合条件的信息即可;
(4)利用树状图确定求解概率.
【详解】
(1)统计表如下:
2017年新能源汽车各类型车型销量情况(单位:万辆)
类型
纯电动
混合动力
总计
新能源乘用车
46.8
11.1
57.9
新能源商用车
18.4
1.4
19.8
(2)混动乘用:×100%≈14.3%,14.3%×360°≈51.5°,
纯电动商用:×100%≈23.7%,23.7%×360°≈85.3°,
补全图形如下:
(3)总销量越高,其个人购买量越大.
(4)画树状图如下:
∵一共有12种等可能的情况数,其中抽中1、4的情况有2种,
∴小王恰好调研“比亚迪”和“江淮”这两个厂家的概率为=.
【点睛】
此题主要考查了数据的分析,利用统计表和扇形统计图表示数据的关系,以及用列表法或树状图法求概率,难度一般,注意认真阅读题目信息是关键.
21、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
【解析】
(1)将P(4,-1)代入,可求出解析式
(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
(3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
【详解】
解:(1)由此抛物线顶点为P(4,-1),
所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
所以抛物线解析式为:;
(2)由此抛物线经过点C(4,-1),
所以 一1=16a+4b+3,即b=-4a-1.
因为抛物线的开口向上,则有
其对称轴为直线,而
所以当-1≤x≤2时,y随着x的增大而减小
当x=-1时,y=a+(4a+1)+3=4+5a
当x=2时,y=4a-2(4a+1)+3=1-4a
所以当-1≤x≤2时,1-4a≤y≤4+5a;
(3)当a=1时,抛物线的解析式为y=x2+bx+3
∴抛物线的对称轴为直线
由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
分别代入可得,当x=0时,y=3
当x=1时,y=b+4
当x=-时,y=-+3
①当一<0,即b>0时,3≤y≤b+4,
由b+4=6解得b=2
②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
由b+4=6解得b=2(舍去);
③当 ,即b<-2时,b+4≤y≤3,
由b+4=-6解得b=-10
综上,b=2或-10
【点睛】
本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
22、(1)①、;②(2)或,.
【解析】
据若,则点P为的“特征点”,可得答案;
根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
【详解】
解:,,
点是的“特征点”;
,,
点是的“特征点”;
,,
点不是的“特征点”;
故答案为、
如图1,
在上,若存在的“特征点”点P,点O到直线的距离.
直线交y轴于点E,过O作直线于点H.
因为.
在中,可知.
可得同理可得.
的取值范围是:
如图2
,
设C点坐标为,
直线,.
,,
,.
.
,
线段MN上的所有点都不是的“特征点”,
,
即,
解得或,
点C的横坐标的取值范围是或,.
故答案为 :(1)①、;②(2)或,.
【点睛】
本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
23、(I)4;(II) (III)(2,0)或(0,4)
【解析】
(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
(III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
【详解】
解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
抛物线的对称轴为直线x=3,
∵P(1,3),
∴B(1,5),
∵点B关于抛物线对称轴的对称点为C
∴C(5,5),
∴BC=5﹣1=4;
(II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
B(1,2m﹣1),
∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
∴C(2m﹣1,2m﹣1),
∵PC⊥PA,
∴PC2+AC2=PA2,
∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
整理得2m2﹣5m+3=0,解得m1=1,m2=,
即m的值为;
(III)如图,
∵PE⊥PC,PE=PC,
∴△PME≌△CBP,
∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
而P(1,m)
∴2m﹣2=m,解得m=2,
∴ME=m﹣1=1,
∴E(2,0);
作PH⊥y轴于H,如图,
易得△PHE′≌△PBC,
∴PH=PB=m﹣1,HE′=BC=2m﹣2,
而P(1,m)
∴m﹣1=1,解得m=2,
∴HE′=2m﹣2=2,
∴E′(0,4);
综上所述,m的值为2,点E的坐标为(2,0)或(0,4).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.
24、﹣2≤x<.
【解析】
先分别求出两个不等式的解集,再求其公共解.
【详解】
,
解不等式①得,x<,
解不等式②得,x≥﹣2,
则不等式组的解集是﹣2≤x<.
【点睛】
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
25、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
26、(1)见解析;(2)见解析.
【解析】
(1)利用矩形的性质得出AB的中点,进而得出答案.
(2)利用矩形的性质得出AC、BC的中点,连接并延长,使延长线段与连接这两个中点的线段相等.
【详解】
(1)如图所示:CD即为所求.
(2)
【点睛】
本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.
27、
【解析】
解:由①得③
把③代入②得
把代人③得
∴原方程组的解为
相关试卷
这是一份2024年上海市闵行区中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份上海市闵行区信宏中学2023-2024学年九上数学期末教学质量检测试题含答案,共7页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
这是一份上海市闵行区信宏中学2023-2024学年八上数学期末学业质量监测试题含答案,共7页。试卷主要包含了下列运算正确的是,若分式的值为0,则x的值为等内容,欢迎下载使用。