2022届上海市徐汇区重点达标名校中考数学最后冲刺浓缩精华卷含解析
展开
这是一份2022届上海市徐汇区重点达标名校中考数学最后冲刺浓缩精华卷含解析,共19页。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.一个几何体的三视图如图所示,那么这个几何体是( )
A. B. C. D.
2.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
班级
参加人数
平均数
中位数
方差
甲
55
135
149
191
乙
55
135
151
110
某同学分析上表后得出如下结论:
①甲、乙两班学生的平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
③甲班成绩的波动比乙班大.
上述结论中,正确的是( )
A.①② B.②③ C.①③ D.①②③
3.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
4.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是( )
A.6 B.8 C.10 D.12
5.空气的密度为0.00129g/cm3,0.00129这个数用科学记数法可表示为( )
A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣1
6.已知实数a<0,则下列事件中是必然事件的是( )
A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>0
7.如图,在△ABC中,EF∥BC,,S四边形BCFE=8,则S△ABC=( )
A.9 B.10 C.12 D.13
8.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
9.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.
12.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.
13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
14.若a:b=1:3,b:c=2:5,则a:c=_____.
15.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.
16.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.
三、解答题(共8题,共72分)
17.(8分)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).求此抛物线的表达式;如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
18.(8分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.
(1)求证:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°
①求∠OCE的度数;
②若⊙O的半径为2,求线段EF的长.
19.(8分)列方程或方程组解应用题:
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
20.(8分)计算:(﹣2)2+20180﹣
21.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
(参考数据:sin15°=,cos15°=,tan15°=2﹣)
(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
(2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
(3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.
22.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
23.(12分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
24.在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
(1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是 ;
(2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
(3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱.故选C.
2、D
【解析】
分析:根据平均数、中位数、方差的定义即可判断;
详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
根据方差可知,甲班成绩的波动比乙班大.
故①②③正确,
故选D.
点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
3、A
【解析】
由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
【详解】
解:观察函数图象,可知:m>0,n>0,
∴一次函数y=mx+n的图象经过第一、二、三象限.
故选A.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
4、B
【解析】
分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
详解:如图,过点D作DE⊥AB于E,
∵AB=8,CD=2,
∵AD是∠BAC的角平分线,
∴DE=CD=2,
∴△ABD的面积
故选B.
点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
5、C
【解析】
试题分析:0.00129这个数用科学记数法可表示为1.29×10﹣1.故选C.
考点:科学记数法—表示较小的数.
6、B
【解析】
A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;
C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;
故选B.
点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7、A
【解析】
由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.
【详解】
∵,
∴.
又∵EF∥BC,
∴△AEF∽△ABC.
∴.
∴1S△AEF=S△ABC.
又∵S四边形BCFE=8,
∴1(S△ABC﹣8)=S△ABC,
解得:S△ABC=1.
故选A.
8、C
【解析】
试题分析:28000=1.1×1.故选C.
考点:科学记数法—表示较大的数.
9、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
10、C
【解析】
分析:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,∴∠ABC=60°.
∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.
∵GH∥EF,∴∠2=∠AEC=25°.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.
【详解】
解:多边形的边数是:360°÷40°=9,
则内角和是:(9-2)•180°=1260°.
故答案为1260°.
【点睛】
本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.
12、1.
【解析】
试题分析:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO=×50°=1°.
考点:菱形的性质.
13、或﹣.
【解析】
试题分析:当点F在OB上时,设EF交CD于点P,
可求点P的坐标为(,1).
则AF+AD+DP=3+x, CP+BC+BF=3﹣x,
由题意可得:3+x=2(3﹣x),
解得:x=.
由对称性可求当点F在OA上时,x=﹣,
故满足题意的x的值为或﹣.
故答案是或﹣.
【点睛】
考点:动点问题.
14、2∶1
【解析】
分析:已知a、b两数的比为1:3,根据比的基本性质,a、b两数的比1:3=(1×2):(3×2)=2:6;而b、c的比为:2:5=(2×3):(5×3)=6:1;,所以a、c两数的比为2:1.
详解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案为2:1.
点睛:本题主要考查比的基本性质的实际应用,如果已知甲乙、乙丙两数的比,那么可以根据比的基本性质求出任意两数的比.
15、4.8或
【解析】
根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.
【详解】
①CP和CB是对应边时,△CPQ∽△CBA,
所以=,
即=,
解得t=4.8;
②CP和CA是对应边时,△CPQ∽△CAB,
所以=,
即=,
解得t=.
综上所述,当t=4.8或时,△CPQ与△CBA相似.
【点睛】
此题主要考查相似三角形的性质,解题的关键是分情况讨论.
16、y=(x﹣1)2+
【解析】
直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【详解】
解:y=x2-x+3=(x-)2+,
∴N点坐标为:(,),
令x=0,则y=3,
∴M点的坐标是(0,3).
∵平移该抛物线,使点M平移后的对应点M′与点N重合,
∴抛物线向下平移个单位长度,再向右平移个单位长度即可,
∴平移后的解析式为:y=(x-1)2+.
故答案是:y=(x-1)2+.
【点睛】
此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
三、解答题(共8题,共72分)
17、(1)y=-(x-3)2+5(2)5
【解析】
(1)设顶点式y=a(x-3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;
(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.
【详解】
(1)设此抛物线的表达式为y=a(x-3)2+5,
将点A(1,3)的坐标代入上式,得3=a(1-3)2+5,解得
∴此抛物线的表达式为
(2)∵A(1,3),抛物线的对称轴为直线x=3,
∴B(5,3).
令x=0,则
∴△ABC的面积
【点睛】
考查待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,掌握待定系数法求二次函数的解析式是解题的关键.
18、(1)证明见解析;(2)①∠OCE=45°;②EF =-2.
【解析】
【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.
又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.
(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在 中,∠E=30°,利用内角和定理,得:∠OCE=45°.
②作OG⊥CE于点G,根据垂径定理可得FG=CG, 因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的 倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=, 则EF=GE-FG=-2.
【试题解析】
(1)∵直线与⊙O相切,∴OC⊥CD.
又∵AD⊥CD,∴AD//OC.
∴∠DAC=∠OCA.
又∵OC=OA,∴∠OAC=∠OCA.
∴∠DAC=∠OAC.
∴AC平分∠DAO.
(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°
∵∠E=30°,∴∠OCE=45°.
②作OG⊥CE于点G,可得FG=CG
∵OC=,∠OCE=45°.∴CG=OG=2.
∴FG=2.
∵在Rt△OGE中,∠E=30°,∴GE=.
∴EF=GE-FG=-2.
【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.
19、15千米.
【解析】
首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.
【详解】
:解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:
=4×
解得:x=15,经检验x=15是原方程的解且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
20、﹣1
【解析】
分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.
详解:原式=4+1-6=-1.
点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.
21、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
【解析】
(1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
(2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
(3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
【详解】
解:(1)EF∥BD.
证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
∴DE=BF,
又∵DE∥BF,
∴四边形DBFE是平行四边形,
∴EF∥DB;
(2)①AE=AM.
∵EF∥BD,
∴∠F=∠ABD=45°,
∴MB=BF=DE,
∵正方形ABCD,
∴∠ADC=∠ABC=90°,AB=AD,
∴△ADE≌△ABM,
∴AE=AM;
②△AEM能为等边三角形.
若△AEM是等边三角形,则∠EAM=60°,
∵△ADE≌△ABM,
∴∠DAE=∠BAM=15°,
∵tan∠DAE=,AD=8,
∴2﹣=,
∴DE=16﹣8,
即当DE=16﹣8时,△AEM是等边三角形;
(3)△ANF的面积不变.
设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,
∵CD∥AB,
∴△DEN∽△BNA,
∴=,
∴,
∴PN=,
∴S△ANF=AF×PN=×(x+8)×=32,
即△ANF的面积不变.
【点睛】
本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
23、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
24、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
【解析】
(1)先判断出m(n﹣1)=6,进而得出结论;
(2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
【详解】
(1)设m=x,n﹣1=y,
∵mn﹣m=6,
∴m(n﹣1)=6,
∴xy=6,
∴
∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
故答案为:;
(2)∴点P(x,y)到点A(0,1),
∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
∴x2+(y﹣1)2=(y+1)2,
∴
(3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
∴线段MN的中点为Q的纵坐标为
∴
∴x2﹣4kx﹣4b=0,
∴x1+x2=4k,x1x2=﹣4b,
∴
∴
∴
∴点Q到x轴的最短距离为1.
【点睛】
此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.
相关试卷
这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。
这是一份2022年河南省新密市重点达标名校中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份2022年广西省蒙山县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,﹣23的相反数是等内容,欢迎下载使用。