终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析

    立即下载
    加入资料篮
    2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析第1页
    2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析第2页
    2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析

    展开

    这是一份2022届上海浦东第四教育署重点达标名校中考数学适应性模拟试题含解析,共19页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )

    A.1个 B.2个 C.3个 D.4个
    2.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为(  )
    A.﹣1 B.0 C.1或﹣1 D.2或0
    3.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( )

    A. B. C. D.不能确定
    4.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
    A.4 B.8 C.2 D.-2
    5.如图所示的图形,是下面哪个正方体的展开图(  )

    A. B. C. D.
    6.某青年排球队12名队员年龄情况如下:
    年龄
    18
    19
    20
    21
    22
    人数
    1
    4
    3
    2
    2
    则这12名队员年龄的众数、中位数分别是( )
    A.20,19 B.19,19 C.19,20.5 D.19,20
    7.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )

    A.13;13 B.14;10 C.14;13 D.13;14
    8.某公司有11名员工,他们所在部门及相应每人所创年利润如下表所示,已知这11个数据的中位数为1.
    部门
    人数
    每人所创年利润(单位:万元)

    1
    19

    3
    8

    7


    4
    3
    这11名员工每人所创年利润的众数、平均数分别是  
    A.10,1 B.7,8 C.1,6.1 D.1,6
    9.一元二次方程x2+kx﹣3=0的一个根是x=1,则另一个根是( )
    A.3 B.﹣1 C.﹣3 D.﹣2
    10.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    11.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于(  )
    A. B. C. D.
    12.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是(  )
    A.2、40 B.42、38 C.40、42 D.42、40
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______

    14.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.

    15.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是_____.

    16.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.

    17.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.

    18.已知点 M(1,2)在反比例函数的图象上,则 k=____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
    20.(6分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.

    21.(6分)如图,在中,AB=AC,,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.

    (1)∠EDB=_____(用含的式子表示)
    (2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.
    ①根据条件补全图形;
    ②写出DM与DN的数量关系并证明;
    ③用等式表示线段BM、CN与BC之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.
    22.(8分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)当A(﹣1,0),C(0,﹣3)时,求抛物线的解析式和顶点坐标;
    (2)P(m,t)为抛物线上的一个动点.
    ①当点P关于原点的对称点P′落在直线BC上时,求m的值;
    ②当点P关于原点的对称点P′落在第一象限内,P′A2取得最小值时,求m的值及这个最小值.
    23.(8分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
    (1)依题意补全图形;
    (2)猜想AE与CD的数量关系,并证明.

    24.(10分)将二次函数的解析式化为的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.
    25.(10分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    26.(12分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
    求,,的值;求四边形的面积.
    27.(12分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
    故选B.
    【点睛】
    本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
    2、A
    【解析】
    把x=﹣1代入方程计算即可求出k的值.
    【详解】
    解:把x=﹣1代入方程得:1+2k+k2=0,
    解得:k=﹣1,
    故选:A.
    【点睛】
    此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.
    3、B
    【解析】
    由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.
    【详解】
    ∵AB=CD,
    ∴AC+BC=BC+BD,
    即AC=BD,
    又∵BC=2AC,
    ∴BC=2BD,
    ∴CD=3BD=3AC.
    故选B.
    【点睛】
    本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.
    4、C
    【解析】
    解:由题意得:,∴,∴x=±1.故选C.
    5、D
    【解析】
    根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.
    【详解】
    A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:
    B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;
    C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.
    D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;
    故选D.
    【点睛】
    本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.
    6、D
    【解析】
    先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.
    【详解】
    这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.
    故选D.
    【点睛】
    本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.
    7、C
    【解析】
    根据统计图,利用众数与中位数的概念即可得出答案.
    【详解】
    从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11
    所以众数为14;
    将气温按从低到高的顺序排列为:10,11,12,13,14,14,15
    所以中位数为13
    故选:C.
    【点睛】
    本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.
    8、D
    【解析】
    根据中位数的定义即可求出x的值,然后根据众数的定义和平均数公式计算即可.
    【详解】
    解:这11个数据的中位数是第8个数据,且中位数为1,

    则这11个数据为3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,
    所以这组数据的众数为1万元,平均数为万元.
    故选:.
    【点睛】
    此题考查的是中位数、众数和平均数,掌握中位数的定义、众数的定义和平均数公式是解决此题的关键.
    9、C
    【解析】
    试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.
    【考点】根与系数的关系;一元二次方程的解.
    10、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
    11、B
    【解析】
    直接得出两位数是3的倍数的个数,再利用概率公式求出答案.
    【详解】
    ∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
    十位数为3,则两位数是3的倍数的个数为2.
    ∴得到的两位数是3的倍数的概率为: =.
    故答案选:B.
    【点睛】
    本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.
    12、D
    【解析】【分析】根据众数和中位数的定义分别进行求解即可得.
    【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,
    将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,
    故选D.
    【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、-12
    【解析】
    过E点作EF⊥OC于F,如图所示:

    由条件可知:OE=OA=5,,
    所以EF=3,OF=4,
    则E点坐标为(-4,3)
    设反比例函数的解析式是y=,
    则有k=-4×3=-12.
    故答案是:-12.
    14、45°
    【解析】
    试题解析:

    如图,连接CE,
    ∵AB=2,BC=1,
    ∴DE=EF=1,CD=GF=2,
    在△CDE和△GFE中

    ∴△CDE≌△GFE(SAS),
    ∴CE=GE,∠CED=∠GEF,



    故答案为
    15、
    【解析】
    试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.
    故答案为x>1.
    16、1
    【解析】
    解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.
    点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.
    17、1
    【解析】
    试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.
    18、-2
    【解析】
    =1×(-2)=-2

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
    【解析】
    (1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
    (2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
    【详解】
    (1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
    根据题意得:
    方程两边同乘以,得
    解得:
    经检验,是原方程的解.
    ∴当时,.
    答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
    (2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
    方案一:由甲工程队单独完成.所需费用为:(万元);
    方案二:由乙工程队单独完成.所需费用为:(万元);
    方案三:由甲乙两队合作完成.所需费用为:(万元).
    ∵∴应该选择甲工程队承包该项工程.
    【点睛】
    本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    20、见解析
    【解析】
    连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
    【详解】
    证明:连接AF,

    ∵EF为AB的垂直平分线,
    ∴AF=BF,
    又AB=AC,∠BAC=120°,
    ∴∠B=∠C=∠BAF=30°,
    ∴∠FAC=90°,
    ∴AF=FC,
    ∴FC=2BF.
    【点睛】
    本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
    21、(1);(2)(2)①见解析;②DM=DN,理由见解析;③数量关系:
    【解析】
    (1)先利用等腰三角形的性质和三角形内角和得到∠B=∠C=90°﹣α,然后利用互余可得到∠EDB=α;
    (2)①如图,利用∠EDF=180°﹣2α画图;
    ②先利用等腰三角形的性质得到DA平分∠BAC,再根据角平分线性质得到DE=DF,根据四边形内角和得到∠EDF=180°﹣2α,所以∠MDE=∠NDF,然后证明△MDE≌△NDF得到DM=DN;
    ③先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,利用等量代换得到BM+CN=2BE,然后根据正弦定义得到BE=BDsinα,从而有BM+CN=BC•sinα.
    【详解】
    (1)∵AB=AC,∴∠B=∠C(180°﹣∠A)=90°﹣α.
    ∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α.
    故答案为:α;
    (2)①如图:

    ②DM=DN.理由如下:∵AB=AC,BD=DC,∴DA平分∠BAC.
    ∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°.
    ∵∠A=2α,∴∠EDF=180°﹣2α.
    ∵∠MDN=180°﹣2α,∴∠MDE=∠NDF.
    在△MDE和△NDF中,∵,∴△MDE≌△NDF,∴DM=DN;
    ③数量关系:BM+CN=BC•sinα.
    证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BDsinα,从而有BM+CN=BC•sinα.
    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.
    22、(1)抛物线的解析式为y=x3﹣3x﹣1,顶点坐标为(1,﹣4);(3)①m=;②P′A3取得最小值时,m的值是,这个最小值是.
    【解析】
    (1)根据A(﹣1,3),C(3,﹣1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;
    (3)①根据题意可以得到点P′的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P′落在直线BC上,从而可以求得m的值;
    ②根据题意可以表示出P′A3,从而可以求得当P′A3取得最小值时,m的值及这个最小值.
    【详解】
    解:(1)∵抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(﹣1,3),C(3,﹣1),∴,解得:,∴该抛物线的解析式为y=x3﹣3x﹣1.
    ∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴抛物线的顶点坐标为(1,﹣4);
    (3)①由P(m,t)在抛物线上可得:t=m3﹣3m﹣1.
    ∵点P和P′关于原点对称,∴P′(﹣m,﹣t),当y=3时,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:点B(1,3).
    ∵点B(1,3),点C(3,﹣1),设直线BC对应的函数解析式为:y=kx+d,,解得:,∴直线BC的直线解析式为y=x﹣1.
    ∵点P′落在直线BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;
    ②由题意可知,点P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.
    ∵二次函数的最小值是﹣4,∴﹣4≤t<3.
    ∵点P(m,t)在抛物线上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,过点P′作P′H⊥x轴,H为垂足,有H(﹣m,3).
    又∵A(﹣1,3),则P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴当t=﹣时,P′A3有最小值,此时P′A3=,∴=m3﹣3m﹣1,解得:m=.
    ∵m<3,∴m=,即P′A3取得最小值时,m的值是,这个最小值是.

    【点睛】
    本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.
    23、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意画出图形即可;
    (2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
    【详解】
    解:(1)如图:

    (2)AE与 CD的数量关系为AE=CD.
    证明:∵∠C=90°,AC=BC,
    ∴∠A=45°.
    ∵DE⊥AB,
    ∴∠ADE=∠A=45°.
    ∴AE=DE,
    ∵BD平分∠ABC,
    ∴CD=DE,
    ∴AE=CD.
    【点睛】
    此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
    24、开口方向:向上;点坐标:(-1,-3);称轴:直线.
    【解析】
    将二次函数一般式化为顶点式,再根据a的值即可确定该函数图像的开口方向、顶点坐标和对称轴.
    【详解】
    解:,


    ∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线.
    【点睛】
    熟练掌握将一般式化为顶点式是解题关键.
    25、(1)(2)作图见解析;(3).
    【解析】
    (1)利用平移的性质画图,即对应点都移动相同的距离.
    (2)利用旋转的性质画图,对应点都旋转相同的角度.
    (3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.
    【详解】
    解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.
    (2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,△A1B2C2即为所求.

    (3)∵,
    ∴点B所走的路径总长=.
    考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.
    26、(1),,.(2)6
    【解析】
    (1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
    【详解】
    解:(1)∵点在上,
    ∴,
    ∵点在上,且,
    ∴.
    ∵过,两点,
    ∴,
    解得,
    ∴,,.
    (2)如图,延长,交于点,则.
    ∵轴,轴,
    ∴,,
    ∴,,



    .
    ∴四边形的面积为6.

    【点睛】
    考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
    27、至少涨到每股6.1元时才能卖出.
    【解析】
    根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.
    【详解】
    解:设涨到每股x元时卖出,
    根据题意得1000x-(5000+1000x)×0.5%≥5000+1000,
    解这个不等式得x≥,
    即x≥6.1.
    答:至少涨到每股6.1元时才能卖出.
    【点睛】
    本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.

    相关试卷

    上海浦东第四教育署2023-2024学年数学九上期末质量跟踪监视试题含答案:

    这是一份上海浦东第四教育署2023-2024学年数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔, 抛物线的顶点坐标,二次函数的顶点坐标为等内容,欢迎下载使用。

    长沙市重点达标名校2021-2022学年中考数学适应性模拟试题含解析:

    这是一份长沙市重点达标名校2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了如图图形中是中心对称图形的是,化简的结果是,- 的绝对值是等内容,欢迎下载使用。

    上海市浦东新区第三教育署达标名校2022年中考数学模拟精编试卷含解析:

    这是一份上海市浦东新区第三教育署达标名校2022年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map