搜索
    上传资料 赚现金
    英语朗读宝

    2022届四川省荣县中考五模数学试题含解析

    2022届四川省荣县中考五模数学试题含解析第1页
    2022届四川省荣县中考五模数学试题含解析第2页
    2022届四川省荣县中考五模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省荣县中考五模数学试题含解析

    展开

    这是一份2022届四川省荣县中考五模数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,我省2013年的快递业务量为1,下列说法等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为(  )

    A.60 n mile B.60 n mile C.30 n mile D.30 n mile
    2.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
    A.60元 B.70元 C.80元 D.90元
    3.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(  )

    A.甲超市的利润逐月减少
    B.乙超市的利润在1月至4月间逐月增加
    C.8月份两家超市利润相同
    D.乙超市在9月份的利润必超过甲超市
    4.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
    A.1.2(1+x)=2.5
    B.1.2(1+2x)=2.5
    C.1.2(1+x)2=2.5
    D.1.2(1+x)+1.2(1+x)2=2.5
    5.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值 B.有最大值 C.有最小值 D.有最小值
    6.下列说法:
    四边相等的四边形一定是菱形
    顺次连接矩形各边中点形成的四边形一定是正方形
    对角线相等的四边形一定是矩形
    经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分
    其中正确的有  个.
    A.4 B.3 C.2 D.1
    7.在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )
    A.-4或-14 B.-4或14 C.4或-14 D.4或14
    8.已知反比例函数y=﹣,当1<x<3时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
    9.一元二次方程x2﹣5x﹣6=0的根是(  )
    A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=6
    10.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于(  )

    A.13 B.14 C.15 D.16
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.

    12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
    13.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
    14.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.

    15.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.
    16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.

    17.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是_________.
    三、解答题(共7小题,满分69分)
    18.(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
    本次抽样调查了   个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是   度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?
    19.(5分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
    求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
    20.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
    (1)分别求这两个函数的表达式;
    (2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

    21.(10分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
    (1)请写出两个“关于轴对称的二次函数”;
    (2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
    22.(10分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    23.(12分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.

    24.(14分)如图1,AB为半圆O的直径,半径的长为4cm,点C为半圆上一动点,过点C作CE⊥AB,垂足为点E,点D为弧AC的中点,连接DE,如果DE=2OE,求线段AE的长.
    小何根据学习函数的经验,将此问题转化为函数问题解决.
    小华假设AE的长度为xcm,线段DE的长度为ycm.
    (当点C与点A重合时,AE的长度为0cm),对函数y随自变量x的变化而变化的规律进行探究.
    下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数).
    (1)通过取点、画图、测量,得到了x与y的几组值,如下表:
    x/cm
    0
    1
    2
    3
    4
    5
    6
    7
    8
    y/cm
    0
    1.6
    2.5
    3.3
    4.0
    4.7
       
    5.8
    5.7
    当x=6cm时,请你在图中帮助小何完成作图,并使用刻度尺度量此时线段DE的长度,填写在表格空白处:
    (2)在图2中建立平面直角坐标系,描出补全后的表中各组对应值为坐标的点,画出该函数的图象;
    (3)结合画出的函数图象解决问题,当DE=2OE时,AE的长度约为   cm.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    如图,作PE⊥AB于E.
    在Rt△PAE中,∵∠PAE=45°,PA=60n mile,
    ∴PE=AE=×60=n mile,
    在Rt△PBE中,∵∠B=30°,
    ∴PB=2PE=n mile.
    故选B.

    2、C
    【解析】
    设销售该商品每月所获总利润为w,
    则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
    ∴当x=80时,w取得最大值,最大值为3600,
    即售价为80元/件时,销售该商品所获利润最大,故选C.
    3、D
    【解析】
    【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
    【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
    B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
    C、8月份两家超市利润相同,此选项正确,不符合题意;
    D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
    故选D.
    【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
    4、C
    【解析】
    试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
    1.2(1+x)2=2.5,
    故选C.
    5、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    6、C
    【解析】
    ∵四边相等的四边形一定是菱形,∴①正确;
    ∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;
    ∵对角线相等的平行四边形才是矩形,∴③错误;
    ∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;
    其中正确的有2个,故选C.
    考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.
    7、D
    【解析】
    根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.
    【详解】
    ∵一条抛物线的函数表达式为y=x2+6x+m,
    ∴这条抛物线的顶点为(-3,m-9),
    ∴关于x轴对称的抛物线的顶点(-3,9-m),
    ∵它们的顶点相距10个单位长度.
    ∴|m-9-(9-m)|=10,
    ∴2m-18=±10,
    当2m-18=10时,m=1,
    当2m-18=-10时,m=4,
    ∴m的值是4或1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系.
    8、D
    【解析】
    根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
    【详解】
    解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
    故选D.
    【点睛】
    本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
    9、D
    【解析】
    本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.
    【详解】
    x2-5x-6=1
    (x-6)(x+1)=1
    x1=-1,x2=6
    故选D.
    【点睛】
    本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.
    10、D
    【解析】
    由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.
    【详解】
    解:∵MN是线段AB的垂直平分线,
    ∴AD=BD,
    ∵AB=AC=10,
    ∴BD+CD=AD+CD=AC=10,
    ∴△BCD的周长=AC+BC=10+6=16,故选D.
    【点睛】
    此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    根据相似三角形的对应边的比相等列出比例式,计算即可.
    【详解】
    ∵△ADE∽△ACB,∴=,即=,
    解得:BD=1.
    故答案为1.
    【点睛】
    本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
    12、20000
    【解析】
    试题分析:1000÷=20000(条).
    考点:用样本估计总体.
    13、3或1.2
    【解析】
    【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
    【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
    ∵△PBE∽△DBC,
    ∴∠PBE=∠DBC,∴点P在BD上,
    如图1,当DP=DA=8时,BP=2,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=2:10,
    ∴PE:6=2:10,
    ∴PE=1.2;

    如图2,当AP=DP时,此时P为BD中点,
    ∵△PBE∽△DBC,
    ∴PE:CD=PB:DB=1:2,
    ∴PE:6=1:2,
    ∴PE=3;

    综上,PE的长为1.2或3,
    故答案为:1.2或3.
    【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
    14、1
    【解析】
    根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.
    【详解】
    根据题意,作△EFC,

    树高为CD,且∠ECF=90°,ED=3,FD=12,
    易得:Rt△EDC∽Rt△DCF,
    有,即DC2=ED×FD,
    代入数据可得DC2=31,
    DC=1,
    故答案为1.
    15、1或1
    【解析】
    由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.
    【详解】
    ∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,
    ∴这两圆内切,
    ∴若大圆的半径为4,则另一个圆的半径为:4-3=1,
    若小圆的半径为4,则另一个圆的半径为:4+3=1.
    故答案为:1或1
    【点睛】
    此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.
    16、
    【解析】
    分析:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=1,OM=AN=k,求出B(1+k,k﹣1),得出方程(1+k)•(k﹣1)=k,解方程即可.
    详解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,

    则OD=MN,DN=OM,∠AMO=∠BNA=90°,
    ∴∠AOM+∠OAM=90°,
    ∵∠AOB=∠OBA=45°,
    ∴OA=BA,∠OAB=90°,
    ∴∠OAM+∠BAN=90°,
    ∴∠AOM=∠BAN,
    ∴△AOM≌△BAN,
    ∴AM=BN=1,OM=AN=k,
    ∴OD=1+k,BD=OM﹣BN=k﹣1
    ∴B(1+k,k﹣1),
    ∵双曲线y=(x>0)经过点B,
    ∴(1+k)•(k﹣1)=k,
    整理得:k2﹣k﹣1=0,
    解得:k=(负值已舍去),
    故答案为.
    点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.
    【详解】
    请在此输入详解!
    17、2
    【解析】
    由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.
    【详解】
    ∵一个正n边形的每个内角为144°,
    ∴144n=180×(n-2),解得:n=1.
    这个正n边形的所有对角线的条数是:= =2.
    故答案为2.
    【点睛】
    本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.

    三、解答题(共7小题,满分69分)
    18、 (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.
    【解析】
    (1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;
    (2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;
    (3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;
    (4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.
    【详解】
    解:(1)本次抽样调查的家庭数是:30÷=200(个);
    故答案为200;
    (2)学习0.5﹣1小时的家庭数有:200×=60(个),
    学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),
    补图如下:

    (3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×=36°;
    故答案为36;
    (4)根据题意得:
    3000×=2100(个).
    答:该社区学习时间不少于1小时的家庭约有2100个.
    【点睛】
    本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    19、(1)证明见解析;(2)
    【解析】
    (1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
    【详解】
    (1)连接
    ∵平分,
    ∴,
    ∵ ,
    ∴,
    ∴,
    ∴OD//AC,
    ∴,

    又是的半径,
    ∴是的切线
    (2)由题意得
    ∵是弧的中点
    ∴弧弧

    ∴弧弧
    ∴弧弧弧

    在中


    .

    【点睛】
    本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
    20、(1)反比例函数表达式为,正比例函数表达式为;
    (2),.
    【解析】
    试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
    试题解析:()把代入反比例函数表达式,
    得,解得,
    ∴反比例函数表达式为,
    把代入正比例函数,
    得,解得,
    ∴正比例函数表达式为.
    ()直线由直线向上平移个单位所得,
    ∴直线的表达式为,
    由,解得或,
    ∵在第四象限,
    ∴,
    连接,
    ∵,




    21、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
    【解析】
    (1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
    (2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
    【详解】
    解:(1)答案不唯一,如;
    (2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
    即a=m,--=0,,
    整理得m=a,n=-b,p=c,
    则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
    ∴函数y1+y2的顶点坐标为(0,2c).
    【点睛】
    本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
    22、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    23、(1)CD=BE,理由见解析;(1)证明见解析.
    【解析】
    (1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
    (1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
    【详解】
    解:(1)CD=BE,理由如下:
    ∵△ABC和△ADE为等腰三角形,
    ∴AB=AC,AD=AE,
    ∵∠EAD=∠BAC,
    ∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
    即∠EAB=∠CAD,
    在△EAB与△CAD中,
    ∴△EAB≌△CAD,
    ∴BE=CD;
    (1)∵∠BAC=90°,
    ∴△ABC和△ADE都是等腰直角三角形,
    ∴∠ABF=∠C=45°,
    ∵△EAB≌△CAD,
    ∴∠EBA=∠C,
    ∴∠EBA=45°,
    ∴∠EBF=90°,
    在Rt△BFE中,BF1+BE1=EF1,
    ∵AF平分DE,AE=AD,
    ∴AF垂直平分DE,
    ∴EF=FD,
    由(1)可知,BE=CD,
    ∴BF1+CD1=FD1.
    【点睛】
    本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
    24、(1)5.3(2)见解析(3)2.5或6.9
    【解析】
    (1)(2)按照题意取点、画图、测量即可.(3)中需要将DE=2OE转换为y与x的函数关系,注意DE为非负数,函数为分段函数.
    【详解】
    (1)根据题意取点、画图、测量的x=6时,y=5.3
    故答案为5.3
    (2)根据数据表格画图象得

    (3)当DE=2OE时,问题可以转化为折线y= 与(2)中图象的交点
    经测量得x=2.5或6.9时DE=2OE.
    故答案为2.5或6.9
    【点睛】
    动点问题的函数图象探究题,考查了函数图象的画法,应用了数形结合思想和转化的数学思想.

    相关试卷

    山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析:

    这是一份山西省运城市万荣县重点中学2022年中考冲刺卷数学试题含解析,共20页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。

    2022年四川省眉山县中考数学五模试卷含解析:

    这是一份2022年四川省眉山县中考数学五模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列各式,规定等内容,欢迎下载使用。

    2022年四川省乐山市五中学中考五模数学试题含解析:

    这是一份2022年四川省乐山市五中学中考五模数学试题含解析,共21页。试卷主要包含了二次函数y=等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map