年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届四川省射洪市中考数学全真模拟试卷含解析

    2022届四川省射洪市中考数学全真模拟试卷含解析第1页
    2022届四川省射洪市中考数学全真模拟试卷含解析第2页
    2022届四川省射洪市中考数学全真模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省射洪市中考数学全真模拟试卷含解析

    展开

    这是一份2022届四川省射洪市中考数学全真模拟试卷含解析,共23页。试卷主要包含了估计﹣1的值在,下列说法正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是(  )

    A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
    2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    3.如图所示的几何体,它的左视图是(  )

    A. B. C. D.
    4.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
    A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
    5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    6.估计﹣1的值在(  )
    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
    7.下列说法正确的是( )
    A.负数没有倒数 B.﹣1的倒数是﹣1
    C.任何有理数都有倒数 D.正数的倒数比自身小
    8.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )

    A.14° B.15° C.16° D.17°
    9.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )

    A.90° B.60° C.45° D.30°
    10.在平面直角坐标系中,点(2,3)所在的象限是(   )
    A.第一象限                            B.第二象限                            C.第三象限                            D.第四象限
    11.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于(  )

    A.4 B.6 C.2 D.8
    12.如图,在矩形ABCD中,AB=3,AD=4,点E在边BC上,若AE平分∠BED,则BE的长为(  )

    A. B. C. D.4﹣
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.比较大小:_____1(填“<”或“>”或“=”).
    14.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.

    15.如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线(>0)交AB于点E,AE︰EB=1︰3.则矩形OABC的面积是 __________.

    16.如图,将的边绕着点顺时针旋转得到,边AC绕着点A逆时针旋转得到,联结.当时,我们称是的“双旋三角形”.如果等边的边长为a,那么它的“双旋三角形”的面积是__________(用含a的代数式表示).

    17.因式分解:9x﹣x2=_____.
    18.分解因式:x2y﹣4xy+4y=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知点O是正方形ABCD对角线BD的中点.
    (1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.
    ①∠AEM=∠FEM; ②点F是AB的中点;
    (2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;
    (3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).
    20.(6分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,求的值.

    21.(6分)计算:﹣22﹣+|1﹣4sin60°|
    22.(8分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
    (1)求购进A、B两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
    (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
    23.(8分)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形.

    24.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:

    (1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
    (2)求本次调查获取的样本数据的平均数、众数和中位数;
    (3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
    25.(10分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.

    26.(12分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣ <a<的整数解.
    27.(12分)已知,抛物线(为常数).

    (1)抛物线的顶点坐标为( , )(用含的代数式表示);
    (2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
    (3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    作出图形,结合图形进行分析可得.
    【详解】
    如图所示:

    ①以AC为对角线,可以画出▱AFCB,F(-3,1);
    ②以AB为对角线,可以画出▱ACBE,E(1,-1);
    ③以BC为对角线,可以画出▱ACDB,D(3,1),
    故选B.
    2、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    3、D
    【解析】
    分析:根据从左边看得到的图形是左视图,可得答案.
    详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
    故选D.
    点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
    4、C
    【解析】
    试题分析:28000=1.1×1.故选C.
    考点:科学记数法—表示较大的数.
    5、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    6、B
    【解析】
    根据,可得答案.
    【详解】
    解:∵,
    ∴,

    ∴﹣1的值在2和3之间.
    故选B.
    【点睛】
    本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
    7、B
    【解析】
    根据倒数的定义解答即可.
    【详解】
    A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.
    【点睛】
    本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.
    8、C
    【解析】
    依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.
    【详解】
    如图,

    ∵∠ABC=60°,∠2=44°,
    ∴∠EBC=16°,
    ∵BE∥CD,
    ∴∠1=∠EBC=16°,
    故选:C.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
    9、C
    【解析】
    试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
    试题解析:连接AC,如图:

    根据勾股定理可以得到:AC=BC=,AB=.
    ∵()1+()1=()1.
    ∴AC1+BC1=AB1.
    ∴△ABC是等腰直角三角形.
    ∴∠ABC=45°.
    故选C.
    考点:勾股定理.
    10、A
    【解析】
    根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
    【详解】
    解:点(2,3)所在的象限是第一象限.
    故答案为:A
    【点睛】
    考核知识点:点的坐标与象限的关系.
    11、A
    【解析】
    解:连接OA,OC,过点O作OD⊥AC于点D,

    ∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
    ∴∠COD=∠B=60°;
    在Rt△COD中,OC=4,∠COD=60°,
    ∴CD=OC=2,
    ∴AC=2CD=4.
    故选A.
    【点睛】
    本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
    12、D
    【解析】
    首先根据矩形的性质,可知AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,然后根据AE平分∠BED求得ED=AD;利用勾股定理求得EC的长,进而求得BE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AB=CD=3,AD=BC=4,∠D=90°,AD∥BC,
    ∴∠DAE=∠BEA,
    ∵AE是∠DEB的平分线,
    ∴∠BEA=∠AED,
    ∴∠DAE=∠AED,
    ∴DE=AD=4,
    再Rt△DEC中,EC===,
    ∴BE=BC-EC=4-.
    故答案选D.
    【点睛】
    本题考查了矩形的性质与角平分线的性质以及勾股定理的应用,解题的关键是熟练的掌握矩形的性质与角平分线的性质以及勾股定理的应用.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、<
    【解析】
    ∵≈0.62,0.62<1,
    ∴<1;
    故答案为<.
    14、①②③④ .
    【解析】
    由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
    证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;
    由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;
    证出△ACD∽△FEQ,得出对应边成比例,得出④正确.
    【详解】
    解:∵四边形ADEF为正方形,
    ∴∠FAD=90°,AD=AF=EF,
    ∴∠CAD+∠FAG=90°,
    ∵FG⊥CA,
    ∴∠GAF+∠AFG=90°,
    ∴∠CAD=∠AFG,
    在△FGA和△ACD中,

    ∴△FGA≌△ACD(AAS),
    ∴AC=FG,①正确;
    ∵BC=AC,
    ∴FG=BC,
    ∵∠ACB=90°,FG⊥CA,
    ∴FG∥BC,
    ∴四边形CBFG是矩形,
    ∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;
    ∵CA=CB,∠C=∠CBF=90°,
    ∴∠ABC=∠ABF=45°,③正确;
    ∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
    ∴△ACD∽△FEQ,
    ∴AC:AD=FE:FQ,
    ∴AD•FE=AD2=FQ•AC,④正确;
    故答案为①②③④.
    【点睛】
    本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
    15、1
    【解析】
    根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B点坐标可表示为(4t,),然后根据矩形面积公式计算.
    【详解】
    设E点坐标为(t,),
    ∵AE:EB=1:3,
    ∴B点坐标为(4t,),
    ∴矩形OABC的面积=4t•=1.
    故答案是:1.
    【点睛】
    考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
    16、.
    【解析】
    首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a.过C'作C'D⊥AB'于D,根据30°角所对的直角边等于斜边的一半得出C'DAC'a,然后根据S△AB'C'AB'•C'D即可求解.
    【详解】
    ∵等边△ABC的边长为a,∴AB=AC=a,∠BAC=60°.
    ∵将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a,∠B'AB=α.
    ∵边AC绕着点A逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.
    如图,过C'作C'D⊥AB'于D,则∠D=90°,∠DAC'=30°,∴C'DAC'a,∴S△AB'C'AB'•C'Da•aa1.
    故答案为:a1.

    【点睛】
    本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积.
    17、x(9﹣x)
    【解析】
    试题解析:
    故答案为
    点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
    18、y(x-2)2
    【解析】
    先提取公因式y,再根据完全平方公式分解即可得.
    【详解】
    原式==,
    故答案为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).
    【解析】
    试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
    试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
    ②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.
    (2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
    (3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.

    考点:四边形综合题.
    20、
    【解析】
    根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形得出对应边成比,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
    【详解】
    解:∵矩形沿直线AC折叠,点B落在点E处,
    ∴CE=BC,∠BAC=∠CAE,
    ∵矩形对边AD=BC,
    ∴AD=CE,
    设AE、CD相交于点F,
    在△ADF和△CEF中,

    ∴△ADF≌△CEF(AAS),
    ∴EF=DF,
    ∵AB∥CD,
    ∴∠BAC=∠ACF,
    又∵∠BAC=∠CAE,
    ∴∠ACF=∠CAE,
    ∴AF=CF,
    ∴AC∥DE,
    ∴△ACF∽△DEF,
    ∴,
    设EF=3k,CF=5k,
    由勾股定理得CE=,
    ∴AD=BC=CE=4k,
    又∵CD=DF+CF=3k+5k=8k,
    ∴AB=CD=8k,
    ∴AD:AB=(4k):(8k)=.

    【点睛】
    本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF和△DEF相似是解题的关键,也是本题的难点.
    21、-1
    【解析】
    直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.
    【详解】
    解:原式=

    =﹣1.
    【点睛】
    此题主要考查了实数运算以及特殊角的三角函数值,正确化简各数是解题关键.
    22、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
    【解析】
    解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
    根据题意得方程组得:,…2分
    解方程组得:,
    ∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;
    (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
    ∴,…6分
    解得:50≤x≤53,…7分
    ∵x 为正整数,
    ∴共有4种进货方案…8分;
    (3)因为B种纪念品利润较高,故B种数量越多总利润越高,
    因此选择购A种50件,B种50件.…10分
    总利润=50×20+50×30=2500(元)
    ∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分
    23、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
    【解析】
    (1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.
    【详解】
    解:(1)∵∠BAC=∠ACD=90°,
    ∴AB∥CD,
    ∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,
    ∴∠DAC=∠ACB,
    ∴AD∥BC,
    ∴四边形ABCD是平行四边形.
    (2)∵∠BAC=90°,BC=5cm,AB=3cm,′
    由勾股定理得:AC=4cm,
    即AB、CD间的最短距离是4cm,
    ∵AB=3cm,AE=AB,
    ∴AE=1cm,BE=2cm,
    设经过ts时,△BEP是等腰三角形,
    当P在BC上时,
    ①BP=EB=2cm,
    t=2时,△BEP是等腰三角形;
    ②BP=PE,
    作PM⊥AB于M,

    ∴BM=ME=BE=1cm
    ∵cos∠ABC=,
    ∴BP=cm,
    t=时,△BEP是等腰三角形;
    ③BE=PE=2cm,
    作EN⊥BC于N,则BP=2BN,
    ∴cosB=,
    ∴,
    BN=cm,
    ∴BP=,
    ∴t=时,△BEP是等腰三角形;
    当P在CD上不能得出等腰三角形,
    ∵AB、CD间的最短距离是4cm,CA⊥AB,CA=4cm,
    当P在AD上时,只能BE=EP=2cm,
    过P作PQ⊥BA于Q,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠QAD=∠ABC,
    ∵∠BAC=∠Q=90°,
    ∴△QAP∽△ABC,
    ∴PQ:AQ:AP=4:3:5,
    设PQ=4xcm,AQ=3xcm,
    在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,
    ∴x= ,
    AP=5x=cm,
    ∴t=5+5+3﹣=,
    答:从运动开始经过2s或s或s或s时,△BEP为等腰三角形.
    【点睛】
    本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生能够熟练利用边角关系解三角形.
    24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
    【解析】
    (1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
    (2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
    (3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
    【详解】
    (1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
    m=100﹣(24+48+8+8)=12,
    故答案为250、12;
    (2)平均数为=1.38(h),
    众数为1.5h,中位数为=1.5h;
    (3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
    【点睛】
    本题主要考查数据的收集、 处理以及统计图表.
    25、见解析
    【解析】
    根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
    【详解】
    解:∵CE∥DF
    ∴∠ECA=∠FDB,
    在△ECA和△FDB中

    ∴△ECA≌△FDB,
    ∴AE=FB.
    【点睛】
    本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
    26、,1.
    【解析】
    首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.
    【详解】
    解:(﹣a)÷(1+)=×=,
    ∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,
    ∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,
    当a=1时,
    原式==1.
    27、(1);(2)图象见解析,或;(3)
    【解析】
    (1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
    (2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
    (3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
    【详解】
    解:(1),
    抛物线的顶点的坐标为.
    故答案为:
    (2)将代入抛物线的解析式得:
    解得:,
    抛物线的解析式为.
    抛物线的大致图象如图所示:

    将代入得:

    解得:或
    抛物线与反比例函数图象的交点坐标为或.
    将代入得:,

    将代入得:,

    综上所述,反比例函数的表达式为或.
    (3)设点的坐标为,
    则点的坐标为,
    的坐标为.

    的长随的增大而减小.
    矩形在其对称轴的左侧,抛物线的对称轴为,


    当时,的长有最小值,的最小值.
    的长度不变,
    当最小时,有最小值.
    的最小值
    故答案为:.
    【点睛】
    本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.

    相关试卷

    2022年四川省西昌市市级名校中考数学全真模拟试题含解析:

    这是一份2022年四川省西昌市市级名校中考数学全真模拟试题含解析,共31页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    2022届四川省凉山州西昌市中考数学全真模拟试卷含解析:

    这是一份2022届四川省凉山州西昌市中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,分式有意义,则x的取值范围是,如图是反比例函数等内容,欢迎下载使用。

    2022届四川省广安市邻水县中考数学全真模拟试卷含解析:

    这是一份2022届四川省广安市邻水县中考数学全真模拟试卷含解析,共18页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map