搜索
    上传资料 赚现金
    英语朗读宝

    2022届四川省自贡市富顺县中考数学模拟预测试卷含解析

    2022届四川省自贡市富顺县中考数学模拟预测试卷含解析第1页
    2022届四川省自贡市富顺县中考数学模拟预测试卷含解析第2页
    2022届四川省自贡市富顺县中考数学模拟预测试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省自贡市富顺县中考数学模拟预测试卷含解析

    展开

    这是一份2022届四川省自贡市富顺县中考数学模拟预测试卷含解析,共22页。试卷主要包含了平面直角坐标系中的点P等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.图为一根圆柱形的空心钢管,它的主视图是( )

    A. B. C. D.
    2.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
    A.众数 B.平均数 C.中位数 D.方差
    3.下列手机手势解锁图案中,是轴对称图形的是( )
    A. B. C. D.
    4.下列四个图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    5.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )

    A. B. C. D.
    6.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为(   )

    A.65° B.130° C.50° D.100°
    7.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
    A. B.
    C. D.
    8.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )

    A.2人 B.16人
    C.20人 D.40人
    9.如图,⊙O的直径AB=2,C是弧AB的中点,AE,BE分别平分∠BAC和∠ABC,以E为圆心,AE为半径作扇形EAB,π取3,则阴影部分的面积为(  )

    A.﹣4 B.7﹣4 C.6﹣ D.
    10.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )

    A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
    连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.
    12.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第_____象限.
    13.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.

    14.有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).
    ①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;
    ②如果方程M有两根符号相同,那么方程N的两根符号也相同;
    ③如果方程M和方程N有一个相同的根,那么这个根必是x=1;
    ④如果5是方程M的一个根,那么是方程N的一个根.
    15.函数中,自变量x的取值范围是_____.
    16.在数轴上与表示的点距离最近的整数点所表示的数为_____.
    三、解答题(共8题,共72分)
    17.(8分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.
    (1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?
    (2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?

    18.(8分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C作CE⊥AD于点E.
    (1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;
    (2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.

    19.(8分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
    (1)证明与推断:
    ①求证:四边形CEGF是正方形;
    ②推断:的值为   :
    (2)探究与证明:
    将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
    (3)拓展与运用:
    正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=   .

    20.(8分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
    (1)n= _____________;
    (2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
    (3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
    (4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.

    21.(8分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图

    (1)将条形统计图补充完整;
    (2)该班团员在这一个月内所发箴言的平均条数是________;
    (3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
    22.(10分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,
    求证:AB=DE

    23.(12分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
    (1)求商场经营该商品原来一天可获利润多少元?
    (2)设后来该商品每件降价x元,商场一天可获利润y元.
    ①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
    ②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
    24.已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
    (1)求抛物y=x2+bx+c线的解析式.
    (2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
    (3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,
    故选B.
    2、D
    【解析】
    方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
    【详解】
    由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
    故选D.
    3、D
    【解析】
    根据轴对称图形与中心对称图形的定义进行判断.
    【详解】
    A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
    【点睛】
    本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
    4、D
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    A、是轴对称图形,不是中心对称图形;
    B、是轴对称图形,不是中心对称图形;
    C、是轴对称图形,不是中心对称图形;
    D、不是轴对称图形,是中心对称图形.
    故选D.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    5、B
    【解析】
    将A、B、C、D分别展开,能和原图相对应的即为正确答案:
    【详解】
    A、展开得到,不能和原图相对应,故本选项错误;
    B、展开得到,能和原图相对,故本选项正确;
    C、展开得到,不能和原图相对应,故本选项错误;
    D、展开得到,不能和原图相对应,故本选项错误.
    故选B.
    6、C
    【解析】
    试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
    考点:切线的性质.
    7、B
    【解析】
    根据第二象限中点的特征可得: ,
    解得: .
    在数轴上表示为:
    故选B.
    考点:(1)、不等式组;(2)、第一象限中点的特征
    8、C
    【解析】
    先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.
    【详解】
    400×人.
    故选C.
    【点睛】
    考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.
    9、A
    【解析】
    ∵O的直径AB=2,
    ∴∠C=90°,
    ∵C是弧AB的中点,
    ∴,
    ∴AC=BC,
    ∴∠CAB=∠CBA=45°,
    ∵AE,BE分别平分∠BAC和∠ABC,
    ∴∠EAB=∠EBA=22.5°,
    ∴∠AEB=180°− (∠BAC+∠CBA)=135°,
    连接EO,

    ∵∠EAB=∠EBA,
    ∴EA=EB,
    ∵OA=OB,
    ∴EO⊥AB,
    ∴EO为Rt△ABC内切圆半径,
    ∴S△ABC=(AB+AC+BC)⋅EO=AC⋅BC,
    ∴EO=−1,
    ∴AE2=AO2+EO2=12+(−1)2=4−2,
    ∴扇形EAB的面积==,△ABE的面积=AB⋅EO=−1,
    ∴弓形AB的面积=扇形EAB的面积−△ABE的面积=,
    ∴阴影部分的面积=O的面积−弓形AB的面积=−()=−4,
    故选:A.
    10、C
    【解析】
    根据平行线性质和全等三角形的判定定理逐个分析.
    【详解】
    由,得∠B=∠D,
    因为,
    若≌,则还需要补充的条件可以是:
    AB=DE,或∠E=∠A, ∠EFD=∠ACB,
    故选C
    【点睛】
    本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、4
    【解析】
    (1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
    (2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
    【详解】
    (1),

    当O,D,C共线时,OC取最大值,此时OD⊥AB.
    ∵,
    ∴△AOB为等腰直角三角形,
    ∴ ;
    (2)∵BC=AC,CD为AB边的高,
    ∴∠ADC=90°,BD=DA=AB=4,
    ∴CD==3,
    当AC∥y轴时,∠ABO=∠CAB,
    ∴Rt△ABO∽Rt△CAD,
    ∴,即,
    解得,t=,
    当BC∥x轴时,∠BAO=∠CBD,
    ∴Rt△ABO∽Rt△BCD,
    ∴,即,
    解得,t= ,
    则当t=或时,△ABC的边与坐标轴平行.
    故答案为t=或.
    【点睛】
    本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
    12、一
    【解析】
    ∵一元二次方程x2-2x-m=0无实数根,
    ∴△=4+4m<0,解得m<-1,
    ∴m+1<0,m-1<0,
    ∴一次函数y=(m+1)x+m-1的图象经过二三四象限,不经过第一象限.
    故答案是:一.
    13、
    【解析】
    试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.
    14、①②④
    【解析】
    试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
    ∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;
    ②∵和符号相同,和符号也相同,
    ∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;
    ③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
    ∵a≠c,
    ∴x2=1,解得:x=±1,错误;
    ④∵5是方程M的一个根,
    ∴25a+5b+c=0,
    ∴a+b+c=0,
    ∴是方程N的一个根,正确.
    故正确的是①②④.
    15、x>1
    【解析】
    试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足
    考点:二次根式、分式有意义的条件
    点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.
    16、3
    【解析】
    ≈3.317,且在3和4之间,∵3.317-3=0.317,4-3.317=0.683,
    且0.683>0.317,∴距离整数点3最近.

    三、解答题(共8题,共72分)
    17、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析
    【解析】
    分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;
    (2)根据学校总人数乘以骑自行车所占的百分比,可得答案.
    详解:
    (1)乘公交车所占的百分比=,
    调查的样本容量50÷=300人,
    骑自行车的人数300×=100人,
    骑自行车的人数多,多100﹣50=50人;
    (2)全校骑自行车的人数2400×=800人,
    800>600,
    故学校准备的600个自行车停车位不足够.
    点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
    18、 (1) 2﹣ ;(2)见解析
    【解析】
    分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x,利用勾股定理得:x=1,求得x的值,可得BD的长;
    (2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.
    详解:(1)∵∠ACB=90°,AC=BC,
    ∴∠CAB=45°,
    ∵∠BAD=15°,
    ∴∠CAE=45°﹣15°=30°,
    Rt△ACE中,CE=1,
    ∴AC=2CE=2,
    Rt△CED中,∠ECD=90°﹣60°=30°,
    ∴CD=2ED,
    设ED=x,则CD=2x,
    ∴CE=x,
    ∴x=1,
    x=,
    ∴CD=2x=,
    ∴BD=BC﹣CD=AC﹣CD=2﹣;
    (2)如图2,连接CM,
    ∵∠ACB=∠ECF=90°,
    ∴∠ACE=∠BCF,
    ∵AC=BC,CE=CF,
    ∴△ACE≌△BCF,
    ∴∠BFC=∠AEC=90°,
    ∵∠CFE=45°,
    ∴∠MFB=45°,
    ∵∠CFM=∠CBA=45°,
    ∴C、M、B、F四点共圆,
    ∴∠BCM=∠MFB=45°,
    ∴∠ACM=∠BCM=45°,
    ∵AC=BC,
    ∴AM=BM.

    点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.
    19、(1)①四边形CEGF是正方形;②;(2)线段AG与BE之间的数量关系为AG=BE;(3)3
    【解析】
    (1)①由、结合可得四边形CEGF是矩形,再由即可得证;
    ②由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;
    (2)连接CG,只需证∽即可得;
    (3)证∽得,设,知,由得、、,由可得a的值.
    【详解】
    (1)①∵四边形ABCD是正方形,
    ∴∠BCD=90°,∠BCA=45°,
    ∵GE⊥BC、GF⊥CD,
    ∴∠CEG=∠CFG=∠ECF=90°,
    ∴四边形CEGF是矩形,∠CGE=∠ECG=45°,
    ∴EG=EC,
    ∴四边形CEGF是正方形;
    ②由①知四边形CEGF是正方形,
    ∴∠CEG=∠B=90°,∠ECG=45°,
    ∴,GE∥AB,
    ∴,
    故答案为;
    (2)连接CG,

    由旋转性质知∠BCE=∠ACG=α,
    在Rt△CEG和Rt△CBA中,
    =、=,
    ∴=,
    ∴△ACG∽△BCE,
    ∴,
    ∴线段AG与BE之间的数量关系为AG=BE;
    (3)∵∠CEF=45°,点B、E、F三点共线,
    ∴∠BEC=135°,
    ∵△ACG∽△BCE,
    ∴∠AGC=∠BEC=135°,
    ∴∠AGH=∠CAH=45°,
    ∵∠CHA=∠AHG,
    ∴△AHG∽△CHA,
    ∴,
    设BC=CD=AD=a,则AC=a,
    则由得,
    ∴AH=a,
    则DH=AD﹣AH=a,CH==a,
    ∴由得,
    解得:a=3,即BC=3,
    故答案为3.
    【点睛】
    本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.
    20、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
    【解析】
    (2)将(0,-2)代入二次函数解析式中即可求出n值;
    (2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
    (2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
    (4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
    【详解】
    解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
    ∴n=﹣2.
    故答案为﹣2.
    (2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
    ∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
    解得:m2=0,m2=﹣2.
    ∵m≠0,
    ∴m=﹣2.
    (2)∵二次函数解析式为y=mx2﹣2mx﹣2,
    ∴二次函数图象的对称轴为直线x=﹣=2.
    ∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
    ∴另一交点的横坐标为2×2﹣4=﹣2,
    ∴另一个交点的坐标为(﹣2,5).
    故答案为(﹣2,5).
    (4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
    ∴0=9m﹣6m﹣2,
    ∴m=2,
    ∴二次函数解析式为y=x2﹣2x﹣2.
    设直线AC的解析式为y=kx+b(k≠0),
    将A(2,0)、C(0,﹣2)代入y=kx+b,得:
    ,解得:,
    ∴直线AC的解析式为y=x﹣2.
    过点P作PD⊥x轴于点D,交AC于点Q,如图所示.

    设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
    ∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
    ∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
    ∴当a=时,△PAC的面积取最大值,最大值为 .
    【点睛】
    本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
    21、(1)作图见解析;(2)3;(3)
    【解析】
    (1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;
    (2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;
    (3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.
    【详解】
    解:(1)该班团员人数为:3÷25%=12(人),
    发了4条赠言的人数为:12−2−2−3−1=4(人),
    将条形统计图补充完整如下:

    (2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,
    故答案为:3;
    (3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,
    ∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,
    方法一:列表得:

    共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
    所选两位同学中恰好是一位男同学和一位女同学的概率为:;
    方法二:画树状图如下:

    共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,
    所选两位同学中恰好是一位男同学和一位女同学的概率为:;
    【点睛】
    此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    22、证明见解析.
    【解析】
    证明:∵AC//DF ∴在和中 ∴△ABC≌△DEF(SAS)
    23、(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.
    【解析】
    :(1)原来一天可获利:20×100=2000元;
    (2)①y=(20-x)(100+10x)=-10(x2-10x-200),
    由-10(x2-10x-200)=2160,
    解得:x1=2,x2=8,
    ∴每件商品应降价2或8元;
    ②观察图像可得
    24、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
    【解析】
    (1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
    (2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
    (3)由题得出tanBAO=,分情况讨论求得F,H坐标.
    【详解】
    (1)把点、代入得,
    解得,,
    ∴抛物线的解析式为.
    (2)由得,∴顶点的坐标为,
    把代入得解得,∴直线解析式为,
    设点,代入得,∴得,
    设点,代入得,∴得,
    由于直线与轴、轴分别交于点、
    ∴易得、,
    ∴,
    ∴,∵点在直线上,
    ∴,
    ∴,即,
    ∵,
    ∴以点为圆心,半径长为4的圆与直线相离.
    (3)点、的坐标分别为、或、或、.
    C(-1,-1),A(0,6),B(1,3)
    可得tanBAO=,
    情况1:tanCF1M= = , CF1=9,
    M F1=6,H1F1=5, F1(8,8),H1(3,3);
    情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
    情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
    【点睛】
    本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.

    相关试卷

    2023年四川省自贡市富顺县板桥中学中考数学一模试卷(含解析):

    这是一份2023年四川省自贡市富顺县板桥中学中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省自贡市富顺县市级名校2022年中考数学全真模拟试题含解析:

    这是一份四川省自贡市富顺县市级名校2022年中考数学全真模拟试题含解析,共18页。试卷主要包含了点M,不等式组的解集是等内容,欢迎下载使用。

    2022年四川省自贡市中考数学模拟试卷(含解析):

    这是一份2022年四川省自贡市中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map