2022届四川省遂宁市遂宁市第二中学中考数学最后一模试卷含解析
展开
这是一份2022届四川省遂宁市遂宁市第二中学中考数学最后一模试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如果,那么等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.计算﹣的结果为( )
A. B. C. D.
2.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是( )
A.①②都对 B.①②都错 C.①对②错 D.①错②对
3.一个多边形内角和是外角和的2倍,它是( )
A.五边形 B.六边形 C.七边形 D.八边形
4.如果,那么( )
A. B. C. D.
5.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
6.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限
C.第二、三、四象限 D.第一、三、四象限
7.估计的运算结果应在哪个两个连续自然数之间( )
A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
8.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
A. B. C. D.
9.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )
A.10 B.14 C.20 D.22
10.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )
A.中位数不相等,方差不相等
B.平均数相等,方差不相等
C.中位数不相等,平均数相等
D.平均数不相等,方差相等
二、填空题(共7小题,每小题3分,满分21分)
11.如图,AC是正五边形ABCDE的一条对角线,则∠ACB=_____.
12.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为______.
13.抛物线y=(x﹣3)2+1的顶点坐标是____.
14.抛物线 的顶点坐标是________.
15.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.
16.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.
17.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=(x<0)的图象经过点A,S△BEC=8,则k=_____.
三、解答题(共7小题,满分69分)
18.(10分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.
请结合图中所给信息解答下列问题:
(1)本次共调查 名学生;扇形统计图中C所对应扇形的圆心角度数是 ;
(2)补全条形统计图;
(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?
(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.
19.(5分)发现
如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣ )×180°.
20.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
21.(10分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
22.(10分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.
(1)求证:△AMC∽△EMB;
(2)求EM的长;
(3)求sin∠EOB的值.
23.(12分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
24.(14分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1.
(1)求反比例函数的解析式;
(2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据分式的运算法则即可
【详解】
解:原式=,
故选A.
【点睛】
本题主要考查分式的运算。
2、A
【解析】
由已知,AB=a,AB+BC=5,当E在BC上时,如图,可得△ABE∽△ECF,继而根据相似三角形的性质可得y=﹣,根据二次函数的性质可得﹣,由此可得a=3,继而可得y=﹣,把y=代入解方程可求得x1=,x2=,由此可求得当E在AB上时,y=时,x=,据此即可作出判断.
【详解】
解:由已知,AB=a,AB+BC=5,
当E在BC上时,如图,
∵E作EF⊥AE,
∴△ABE∽△ECF,
∴,
∴,
∴y=﹣,
∴当x=时,﹣,
解得a1=3,a2=(舍去),
∴y=﹣,
当y=时,=﹣,
解得x1=,x2=,
当E在AB上时,y=时,
x=3﹣=,
故①②正确,
故选A.
【点睛】
本题考查了二次函数的应用,相似三角形的判定与性质,综合性较强,弄清题意,正确画出符合条件的图形,熟练运用二次函数的性质以及相似三角形的判定与性质是解题的关键.
3、B
【解析】
多边形的外角和是310°,则内角和是2×310=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程,从而求出边数n的值.
【详解】
设这个多边形是n边形,根据题意得:
(n﹣2)×180°=2×310°
解得:n=1.
故选B.
【点睛】
本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.
4、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
5、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
6、A
【解析】
由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
【详解】
解:观察函数图象,可知:m>0,n>0,
∴一次函数y=mx+n的图象经过第一、二、三象限.
故选A.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
7、C
【解析】
根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
故选C.
点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
8、B
【解析】
解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:
∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
9、B
【解析】
直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,DC=AB=6,
∵AC+BD=16,
∴AO+BO=8,
∴△ABO的周长是:1.
故选B.
【点睛】
平行四边形的性质掌握要熟练,找到等值代换即可求解.
10、D
【解析】
分别利用平均数以及方差和中位数的定义分析,进而求出答案.
【详解】
2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为: [(2﹣3)2+(3﹣3)2+(3﹣4)2]= ;
3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为: [(3﹣4)2+(4﹣4)2+(5﹣4)2]= ;
故中位数不相等,方差相等.
故选:D.
【点睛】
本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.
二、填空题(共7小题,每小题3分,满分21分)
11、36°
【解析】
由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.
【详解】
∵五边形ABCDE是正五边形,
∴∠B=108°,AB=CB,
∴∠ACB=(180°﹣108°)÷2=36°;
故答案为36°.
12、
【解析】
试题解析:根据题意得:
故答案为
13、 (3,1)
【解析】
分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.
详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).
点睛:主要考查了抛物线顶点式的运用.
14、(0,-1)
【解析】
∵a=2,b=0,c=-1,∴-=0, ,
∴抛物线的顶点坐标是(0,-1),
故答案为(0,-1).
15、(2,0)
【解析】
【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
∵A(m,﹣3)和点B(﹣1,n),
∴OE=1,AF=3,
∵∠ACB=45°,
∴∠APB=90°,
∴∠BPE+∠APF=90°,
∵∠BPE+∠EBP=90°,
∴∠APF=∠EBP,
∵∠BEP=∠AFP=90°,PA=PB,
∴△BPE≌△PAF,
∴PE=AF=3,
设P(a,0),
∴a+1=3,
a=2,
∴P(2,0),
故答案为(2,0).
【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
16、2
【解析】
设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
【详解】
设EF=x,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
∴BD=AB=4+4,EF=BF=x,
∴BE=x,
∵∠BAE=22.5°,
∴∠DAE=90°-22.5°=67.5°,
∴∠AED=180°-45°-67.5°=67.5°,
∴∠AED=∠DAE,
∴AD=ED,
∴BD=BE+ED=x+4+2=4+4,
解得:x=2,
即EF=2.
17、1
【解析】
∵BD是Rt△ABC斜边上的中线,
∴BD=CD=AD,
∴∠DBC=∠ACB,
又∠DBC=∠OBE,∠BOE=∠ABC=90°,
∴△ABC∽△EOB,
∴
∴AB•OB=BC•OE,
∵S△BEC=×BC•OE=8,
∴AB•OB=1,
∴k=xy=AB•OB=1.
三、解答题(共7小题,满分69分)
18、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为.
【解析】
【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;
(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;
(3)用“非常了解”所占的比例乘以800即可求得;
(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.
【详解】(1)本次调查的学生总人数为24÷40%=60人,
扇形统计图中C所对应扇形的圆心角度数是360°×=90°,
故答案为60、90°;
(2)D类型人数为60×5%=3,则B类型人数为60﹣(24+15+3)=18,
补全条形图如下:
(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;
(4)画树状图为:
共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为.
【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.
19、(1)见解析;(2)见解析;(3)1.
【解析】
(1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
(2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
【详解】
(1)如图2,延长AB交CD于E,
则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
∴∠ABC=∠A+∠C+∠D;
(2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
(3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
故答案为1.
【点睛】
此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
20、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
21、(1);(2)这两个数字之和是3的倍数的概率为.
【解析】
(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.
【详解】
解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
∴指针所指扇形中的数字是奇数的概率为,
故答案为;
(2)列表如下:
1
2
3
1
(1,1)
(2,1)
(3,1)
2
(1,2)
(2,2)
(3,2)
3
(1,3)
(2,3)
(3,3)
由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
所以这两个数字之和是3的倍数的概率为=.
【点睛】
本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.
22、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.
【解析】
(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
【详解】
(1)证明:连接AC、EB,如图1,
∵∠A=∠BEC,∠B=∠ACM,
∴△AMC∽△EMB;
(2)解:∵DC是⊙O的直径,
∴∠DEC=90°,
∴DE2+EC2=DC2,
∵DE=,CD=8,且EC为正数,
∴EC=7,
∵M为OB的中点,
∴BM=2,AM=6,
∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,
∴EM=4;
(3)解:过点E作EF⊥AB,垂足为点F,如图2,
∵OE=4,EM=4,
∴OE=EM,
∴OF=FM=1,
∴EF=,
∴sin∠EOB=.
【点睛】
本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.
23、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
24、(1)y=;(2)(4,0)或(0,0)
【解析】
(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;
(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.
【详解】
解:(1)把x=1代入y=2x﹣4,可得
y=2×1﹣4=2,
∴A(1,2),
把(1,2)代入y=,可得k=1×2=6,
∴反比例函数的解析式为y=;
(2)根据题意可得:2x﹣4=,
解得x1=1,x2=﹣1,
把x2=﹣1,代入y=2x﹣4,可得
y=﹣6,
∴点B的坐标为(﹣1,﹣6).
设直线AB与x轴交于点C,
y=2x﹣4中,令y=0,则x=2,即C(2,0),
设P点坐标为(x,0),则
×|x﹣2|×(2+6)=8,
解得x=4或0,
∴点P的坐标为(4,0)或(0,0).
【点睛】本题主要考查用待定系数法求
一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
相关试卷
这是一份2024年四川省遂宁市中考数学试卷【含解析】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年四川省遂宁市船山区第二中学中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了已知等内容,欢迎下载使用。
这是一份2022届四川省遂宁市第二中学中考数学考前最后一卷含解析,共20页。试卷主要包含了的算术平方根是,下列计算正确的是等内容,欢迎下载使用。