2022届四川省泸州市初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列说法中,正确的个数共有( )
(1)一个三角形只有一个外接圆;
(2)圆既是轴对称图形,又是中心对称图形;
(3)在同圆中,相等的圆心角所对的弧相等;
(4)三角形的内心到该三角形三个顶点距离相等;
A.1个 B.2个 C.3个 D.4个
2.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tan∠ACB·tan∠ABC=( )
A.2 B.3 C.4 D.5
3.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( )
A.3 B.4 C.5 D.6
4.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12 B.8 C.4 D.3
5.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
A.①②③ B.①③⑤ C.②③④ D.②④⑤
6.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
7.估计﹣2的值应该在( )
A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
8.下列说法正确的是( )
A.﹣3是相反数 B.3与﹣3互为相反数
C.3与互为相反数 D.3与﹣互为相反数
9.二次函数y=-x2-4x+5的最大值是( )
A.-7 B.5 C.0 D.9
10.一个几何体的三视图如图所示,则该几何体的形状可能是( )
A. B.
C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若a,b互为相反数,则a2﹣b2=_____.
12.若与是同类项,则的立方根是 .
13.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.
14.已知x+y=,xy=,则x2y+xy2的值为____.
15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
16.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.
17.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.
三、解答题(共7小题,满分69分)
18.(10分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)求y关于x的函数解析式;
(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
19.(5分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若DE=3,sin∠BDE=,求AC的长.
20.(8分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.
(1)求证:DB=DE;
(2)若∠BDE=70°,求∠AOB的大小.
21.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型 | A | B | AB | O |
人数 |
| 10 | 5 |
|
(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
22.(10分)计算:﹣3tan30°.
23.(12分)计算:
(1)﹣12018+|﹣2|+2cos30°;
(2)(a+1)2+(1﹣a)(a+1);
24.(14分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据外接圆的性质,圆的对称性,三角形的内心以及圆周角定理即可解出.
【详解】
(1)一个三角形只有一个外接圆,正确;
(2)圆既是轴对称图形,又是中心对称图形,正确;
(3)在同圆中,相等的圆心角所对的弧相等,正确;
(4)三角形的内心是三个内角平分线的交点,到三边的距离相等,错误;
故选:C.
【点睛】
此题考查了外接圆的性质,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.
2、C
【解析】
如图(见解析),连接BD、CD,根据圆周角定理可得,再根据相似三角形的判定定理可得,然后由相似三角形的性质可得,同理可得;又根据圆周角定理可得,再根据正切的定义可得,然后求两个正切值之积即可得出答案.
【详解】
如图,连接BD、CD
在和中,
同理可得:
,即
为⊙O的直径
故选:C.
【点睛】
本题考查了圆周角定理、相似三角形的判定定理与性质、正切函数值等知识点,通过作辅助线,结合圆周角定理得出相似三角形是解题关键.
3、C
【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
【详解】
解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
∴BE=CE=BC=2,
又∵D是AB中点,
∴BD=AB=,
∴DE是△ABC的中位线,
∴DE=AC=,
∴△BDE的周长为BD+DE+BE=++2=5,
故选C.
【点睛】
本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
4、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
【点睛】
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
5、D
【解析】
根据实数的运算法则即可一一判断求解.
【详解】
①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
故选D.
6、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
7、A
【解析】
直接利用已知无理数得出的取值范围,进而得出答案.
【详解】
解:∵1<<2,
∴1-2<﹣2<2-2,
∴-1<﹣2<0
即-2在-1和0之间.
故选A.
【点睛】
此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
8、B
【解析】
符号不同,绝对值相等的两个数互为相反数,可据此来判断各选项是否正确.
【详解】
A、3和-3互为相反数,错误;
B、3与-3互为相反数,正确;
C、3与互为倒数,错误;
D、3与-互为负倒数,错误;
故选B.
【点睛】
此题考查相反数问题,正确理解相反数的定义是解答此题的关键.
9、D
【解析】
直接利用配方法得出二次函数的顶点式进而得出答案.
【详解】
y=﹣x2﹣4x+5=﹣(x+2)2+9,
即二次函数y=﹣x2﹣4x+5的最大值是9,
故选D.
【点睛】
此题主要考查了二次函数的最值,正确配方是解题关键.
10、D
【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.
考点:由三视图判断几何体.
视频
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.
【详解】∵a,b互为相反数,
∴a+b=1,
∴a2﹣b2=(a+b)(a﹣b)=1,
故答案为1.
【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.
12、2.
【解析】
试题分析:若与是同类项,则:,解方程得:.∴=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.
考点:2.立方根;2.合并同类项;3.解二元一次方程组;4.综合题.
13、1
【解析】
分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.
详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),
∴k=1×1=1.
点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键.
14、3
【解析】
分析:因式分解,把已知整体代入求解.
详解:x2y+xy2=xy(x+y)=3.
点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
(2)公式法:完全平方公式,平方差公式.
(3)十字相乘法.
因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
15、0<m<
【解析】
【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.
【详解】把点(12,﹣5)代入直线y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),
设直线l与x轴、y轴分别交于点A、B,(如图所示)
当x=0时,y=m;当y=0时,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=,
过点O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
∴OD•=×m×m,
∵m>0,解得OD=m,
由直线与圆的位置关系可知m <6,解得m<,
故答案为0<m<.
【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.
16、2+
【解析】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,AB=2,半径为2,
∴AE=AB=,PA=2, 根据勾股定理得:PE=1,
∵点A在直线y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
17、
【解析】
先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.
【详解】
∵从中随意摸出两个球的所有可能的结果个数是12,
随意摸出两个球是红球的结果个数是6,
∴从中随意摸出两个球的概率=;
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题(共7小题,满分69分)
18、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
(2)解不等式求出x的范围,根据一次函数的性质计算即可.
【详解】
解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
整理得,y=0.2x+14(0<x<35);
(2)由题意得,35﹣x≤2x,
解得,x≥,
则x的最小整数为12,
∵k=0.2>0,
∴y随x的增大而增大,
∴当x=12时,y有最小值16.4,
答:该公司至少需要投入资金16.4万元.
【点睛】
本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
19、(1)证明见解析;(2)1.
【解析】
(1)根据切线的性质和平行线的性质解答即可;
(2)根据直角三角形的性质和三角函数解答即可.
【详解】
(1)连接OD,
∵OD=OE,
∴∠ODE=∠OED.
∵直线BC为⊙O的切线,
∴OD⊥BC.
∴∠ODB=90°.
∵∠ACB=90°,
∴OD∥AC.
∴∠ODE=∠F.
∴∠OED=∠F.
∴AE=AF;
(2)连接AD,
∵AE是⊙O的直径,
∴∠ADE=90°,
∵AE=AF,
∴DF=DE=3,
∵∠ACB=90°,
∴∠DAF+∠F=90°,∠CDF+∠F=90°,
∴∠DAF=∠CDF=∠BDE,
在Rt△ADF中,=sin∠DAF=sin∠BDE=,
∴AF=3DF=9,
在Rt△CDF中,=sin∠CDF=sin∠BDE=,
∴CF=DF=1,
∴AC=AF﹣CF=1.
【点睛】
本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.
20、(1)证明见解析;(2)110°.
【解析】
分析:(1)欲证明DB=DE,只要证明∠BED=∠ABD即可;
(2)因为△OAB是等腰三角形,属于只要求出∠OBA即可解决问题;
详解:(1)证明:∵DC⊥OA,
∴∠OAB+∠CEA=90°,
∵BD为切线,
∴OB⊥BD,
∴∠OBA+∠ABD=90°,
∵OA=OB,
∴∠OAB=∠OBA,
∴∠CEA=∠ABD,
∵∠CEA=∠BED,
∴∠BED=∠ABD,
∴DE=DB.
(2)∵DE=DB,∠BDE=70°,
∴∠BED=∠ABD=55°,
∵BD为切线,
∴OB⊥BD,
∴∠OBA=35°,
∵OA=OB,
∴∠OBA=180°-2×35°=110°.
点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.
【解析】
【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;
(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.
【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),
所以m=×100=20,
故答案为50,20;
(2)O型献血的人数为46%×50=23(人),
A型献血的人数为50﹣10﹣5﹣23=12(人),
补全表格中的数据如下:
血型 | A | B | AB | O |
人数 | 12 | 10 | 5 | 23 |
故答案为12,23;
(3)从献血者人群中任抽取一人,其血型是A型的概率=,
3000×=720,
估计这3000人中大约有720人是A型血.
【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
22、1.
【解析】
直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.
【详解】
﹣3tan30°
=4+﹣1﹣1﹣3×
=1.
【点睛】
此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.
23、 (1)1;(2)2a+2
【解析】
(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;
(2)先化简原式,然后将x的值代入原式即可求出答案.
【详解】
解:(1)原式=﹣1+2﹣+2×=1;
(2)原式=a2+2a+1+1﹣a2=2a+2.
【点睛】
本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
24、(1)见解析;(2)见解析.
【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】
证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
2022年四川省巴中学市南江县初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年四川省巴中学市南江县初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,如图,在平面直角坐标系中,以A,-的立方根是等内容,欢迎下载使用。
2022年四川省遂宁中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年四川省遂宁中学初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。
2022年四川省资阳安岳县联考初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年四川省资阳安岳县联考初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了﹣2×等内容,欢迎下载使用。