终身会员
搜索
    上传资料 赚现金
    2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析01
    2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析02
    2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析

    展开
    这是一份2022届襄阳市襄城区重点中学中考数学全真模拟试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,7的相反数是,如图,一段抛物线等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为(  )

    A.16 B.12 C.24 D.18
    2.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是(  )

    A. B.
    C. D.
    3.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )
    A. B.
    C. D.
    4.7的相反数是( )
    A.7 B.-7 C. D.-
    5.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(   )

    A.4 B.﹣4 C.﹣6 D.6
    6.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(    )
    A. B. C. D.
    7.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
    A. B. C. D.
    8.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    9.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
    A.40 B.45 C.51 D.56
    10.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )

    A.2:3 B.4:9 C.2:5 D.4:25
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.

    12.计算:3﹣1﹣30=_____.
    13.如图,已知矩形ABCD中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC;④sin∠CDF=.其中正确的结论是_____.(把正确结论的序号都填上)

    14.计算(a3)2÷(a2)3的结果等于________
    15.如图,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S三角形EFC=________.

    16.在我国著名的数学书九章算术中曾记载这样一个数学问题:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设羊价为x钱,则可列关于x的方程为______.
    三、解答题(共8题,共72分)
    17.(8分)如图,已知△ABC.
    (1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
    (2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.

    18.(8分)楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=30米,与亭子距离CE=18米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

    19.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.
    20.(8分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).
    (1)求抛物线的解析式和顶点坐标;
    (2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.
    ①若B、C都在抛物线上,求m的值;
    ②若点C在第四象限,当AC2的值最小时,求m的值.
    21.(8分)计算:2-1+20160-3tan30°+|-|
    22.(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.
    (1)根据图中所给信息填写下表:
    投中个数统计
    平均数
    中位数
    众数
    A
       
    8
       
    B
    7
       
    7
    (2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.

    23.(12分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.
    请结合统计图,回答下列问题:
    (1)这次调查中,一共调查了多少名学生?
    (2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;
    (3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?

    24.如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点

    求m的值及C点坐标;
    在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
    为抛物线上一点,它关于直线BC的对称点为Q
    当四边形PBQC为菱形时,求点P的坐标;
    点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.
    【详解】
    解:∵四边形ABCD是菱形,∴AB=BC.
    ∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.
    故选A.
    【点睛】
    本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
    2、A
    【解析】
    当点F在MD上运动时,0≤x<2;当点F在DA上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.
    【详解】
    解:当点F在MD上运动时,0≤x<2,则:
    y=S梯形ECDG-S△EFC-S△GDF=,
    当点F在DA上运动时,2<x≤4,则:
    y=,
    综上,只有A选项图形符合题意,故选择A.
    【点睛】
    本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.
    3、C
    【解析】
    试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.
    考点:二次函数图象与几何变换.
    4、B
    【解析】
    根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    7的相反数是−7,
    故选:B.
    【点睛】
    此题考查相反数,解题关键在于掌握其定义.
    5、C
    【解析】
    分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
    详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
    ∴OA1=5,
    ∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
    ∴A1A2=A2A3=…=OA1=5,
    ∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
    当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
    即m=﹣1.
    故选C.
    点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
    6、D
    【解析】
    一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.
    【详解】
    根据题意 :从袋中任意摸出一个球,是白球的概率为==.
    故答案为D
    【点睛】
    此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    7、B
    【解析】
    根据简单概率的计算公式即可得解.
    【详解】
    一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
    故选B.
    考点:简单概率计算.
    8、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    9、C
    【解析】
    解:根据定义,得

    解得:.
    故选C.
    10、D
    【解析】
    试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
    试题解析:∵四边形ABCD是平行四边形,
    ∴AB∥CD,BA=DC
    ∴∠EAB=∠DEF,∠AFB=∠DFE,
    ∴△DEF∽△BAF,
    ∴DE:AB=DE:DC=2:5,
    ∴S△DEF:S△ABF=4:25,
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.
    【详解】
    正△A1B1C1的面积是,
    而△A2B2C2与△A1B1C1相似,并且相似比是1:2,
    则面积的比是,则正△A2B2C2的面积是×;
    因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;
    依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.
    所以第8个正△A8B8C8的面积是×()7=.
    故答案为.
    【点睛】
    本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.
    12、﹣.
    【解析】
    原式利用零指数幂、负整数指数幂法则计算即可求出值.
    【详解】
    原式=﹣1=﹣.
    故答案是:﹣.
    【点睛】
    考查了实数的运算,熟练掌握运算法则是解本题的关键.
    13、①②
    【解析】
    只要证明△EAB≌△ADF,∠CDF=∠AEB,利用勾股定理求出AB即可解决问题.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD=BC,AD∥BC,∠B=90°,
    ∵BE=2,EC=1,
    ∴AE=AD=BC=3,AB==,
    ∵AD∥BC,
    ∴∠DAF=∠AEB,
    ∵DF⊥AE,
    ∴∠AFD=∠B=90°,
    ∴△EAB≌△ADF,
    ∴AF=BE=2,DF=AB=,故①②正确,
    不妨设DF平分∠ADC,则△ADF是等腰直角三角形,这个显然不可能,故③错误,
    ∵∠DAF+∠ADF=90°,∠CDF+∠ADF=90°,
    ∴∠DAF=∠CDF,
    ∴∠CDF=∠AEB,
    ∴sin∠CDF=sin∠AEB=,故④错误,
    故答案为①②.
    【点睛】
    本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    14、1
    【解析】
    根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.
    【详解】
    解:原式=
    【点睛】
    本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.
    15、3
    【解析】
    分析:
    由已知条件易得:EF∥AB,且EF:AB=1:2,从而可得△CEF∽△CAB,且相似比为1:2,设S△CEF=x,根据相似三角形的性质可得方程:,解此方程即可求得△EFC的面积.
    详解:
    ∵在△ABC中,点E,F分别是AC,BC的中点,
    ∴EF是△ABC的中位线,
    ∴EF∥AB,EF:AB=1:2,
    ∴△CEF∽△CAB,
    ∴S△CEF:S△CAB=1:4,
    设S△CEF=x,
    ∵S△CAB=S△CEF+S四边形ABFE,S四边形ABFE=9,
    ∴,
    解得:,
    经检验:是所列方程的解.
    故答案为:3.
    点睛:熟悉三角形的中位线定理和相似三角形的面积比等于相似比的平方是正确解答本题的关键.
    16、
    【解析】
    设羊价为x钱,根据题意可得合伙的人数为或,由合伙人数不变可得方程.
    【详解】
    设羊价为x钱,
    根据题意可得方程:,
    故答案为:.
    【点睛】
    本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)20°;
    【解析】
    (1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
    (2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
    【详解】
    (1)如图,AD为所求;

    (2)∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠BDA=90°,
    ∴∠BAD=90°﹣∠B=90°﹣70°=20°.
    【点睛】
    考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
    18、(39+9)米.
    【解析】
    过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.
    【详解】
    解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,
    在Rt△CEF中,∵=tan∠ECF,
    ∴∠ECF=30°,
    ∴EF=CE=10米,CF=10米,
    ∴BH=EF=10米, HE=BF=BC+CF=(25+10)米,
    在Rt△AHE中,∵∠HAE=45°,
    ∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.
    答:楼房AB的高为(35+10)米.

    【点睛】
    本题考查解直角三角形的应用-仰角俯角问题;坡度坡角问题,掌握概念正确计算是本题的解题关键.
    19、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元
    【解析】
    (1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价÷单价可得出关于x的分式方程,解之并检验后即可得出结论;
    (2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润×购进数量即可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,
    由题意,得 ,
    解得x=1500,
    经检验,x=1500是原分式方程的解,
    乙种品牌空调的进价为(1+20%)×1500=1800(元).
    答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;
    (2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,
    由题意,得1500a+1800(10-a)≤16000,
    解得 ≤a,
    设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,
    因为-700<0,
    则w随a的增大而减少,
    当a=7时,w最大,最大为12100元.
    答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.
    【点睛】
    本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.
    20、(1)抛物线解析式为y=﹣x2﹣4x+12,顶点坐标为(﹣2,16);(2)①m=2或m=﹣2;②m的值为 .
    【解析】
    分析:(1)把点A(2,0)代入抛物线y=﹣x2﹣4x+c中求得c的值,即可得抛物线的解析式,根据抛物线的解析式求得抛物线的顶点坐标即可;(2)①由B(m,n)在抛物线上可得﹣m2﹣4m+12=n,再由点B关于原点的对称点为C,可得点C的坐标为(﹣m,﹣n),又因C落在抛物线上,可得﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,所以﹣m2+4m+12=m2﹣4m﹣12,解方程求得m的值即可;②已知点C(﹣m,﹣n)在第四象限,可得﹣m>0,﹣n<0,即m<0,n>0,再由抛物线顶点坐标为(﹣2,16),即可得0<n≤16,因为点B在抛物线上,所以﹣m2﹣4m+12=n,可得m2+4m=﹣n+12,由A(2,0),C(﹣m,﹣n),可得AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,所以当n=时,AC2有最小值,即﹣m2﹣4m+12=,解方程求得m的值,再由m<0即可确定m的值.
    详解:
    (1)∵抛物线y=﹣x2﹣4x+c经过点A(2,0),
    ∴﹣4﹣8+c=0,即c=12,
    ∴抛物线解析式为y=﹣x2﹣4x+12=﹣(x+2)2+16,
    则顶点坐标为(﹣2,16);
    (2)①由B(m,n)在抛物线上可得:﹣m2﹣4m+12=n,
    ∵点B关于原点的对称点为C,
    ∴C(﹣m,﹣n),
    ∵C落在抛物线上,
    ∴﹣m2+4m+12=﹣n,即m2﹣4m﹣12=n,
    解得:﹣m2+4m+12=m2﹣4m﹣12,
    解得:m=2或m=﹣2;
    ②∵点C(﹣m,﹣n)在第四象限,
    ∴﹣m>0,﹣n<0,即m<0,n>0,
    ∵抛物线顶点坐标为(﹣2,16),
    ∴0<n≤16,
    ∵点B在抛物线上,
    ∴﹣m2﹣4m+12=n,
    ∴m2+4m=﹣n+12,
    ∵A(2,0),C(﹣m,﹣n),
    ∴AC2=(﹣m﹣2)2+(﹣n)2=m2+4m+4+n2=n2﹣n+16=(n﹣)2+,
    当n=时,AC2有最小值,
    ∴﹣m2﹣4m+12=,
    解得:m=,
    ∵m<0,∴m=不合题意,舍去,
    则m的值为.
    点睛:本题是二次函数综合题,第(1)问较为简单,第(2)问根据点B(m,n)关于原点的对称点C(-m,-n)均在二次函数的图象上,代入后即可求出m的值即可;(3)确定出AC2与n之间的函数关系式,利用二次函数的性质求得当n=时,AC2有最小值,在解方程求得m的值即可.
    21、
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
    【详解】
    原式=
    =
    =.
    【点睛】
    此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
    22、(1)7,9,7;(2)应该选派B;
    【解析】
    (1)分别利用平均数、中位数、众数分析得出答案;
    (2)利用方差的意义分析得出答案.
    【详解】
    (1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
    B成绩排序后为6,7,7,7,7,8,故中位数为7;
    故答案为:7,9,7;
    (2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
    = [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;
    从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
    【点睛】
    此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    23、 (1)一共调查了300名学生;(2) 36°,补图见解析;(3)估计选择“A:跑步”的学生约有800人.
    【解析】
    (1)由跑步的学生数除以占的百分比求出调查学生总数即可;
    (2)求出跳绳学生占的百分比,乘以360°求出占的圆心角度数,补全条形统计图即可;
    (3)利用跑步占的百分比,乘以2000即可得到结果.
    【详解】
    (1)根据题意得:120÷40%=300(名),
    则一共调查了300名学生;
    (2)根据题意得:跳绳学生数为300﹣(120+60+90)=30(名),
    则扇形统计图中“B:跳绳”所对扇形的圆心角的度数为360°×=36°,

    (3)根据题意得:2000×40%=800(人),
    则估计选择“A:跑步”的学生约有800人.
    【点睛】
    此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
    24、,;存在,;或;当时,.
    【解析】
    (1)用待定系数法求出抛物线解析式;
    (2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
    (3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
    ②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
    【详解】
    解:(1)将B(4,0)代入,解得,m=4,
    ∴二次函数解析式为,令x=0,得y=4,
    ∴C(0,4);
    (2)存在,理由:∵B(4,0),C(0,4),
    ∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
    ∴,
    ∴,
    ∴△=1﹣4b=0,∴b=4,
    ∴,∴M(2,6);
    (3)①如图,∵点P在抛物线上,
    ∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
    ∴线段BC的垂直平分线的解析式为y=x,
    ∴m=,
    ∴m=,
    ∴P(,)或P(,);

    ②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
    ∵点D在直线BC上,∴D(t,﹣t+4),
    ∵PD=﹣(﹣t+4)=,BE+CF=4,
    ∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
    ∵0<t<4,
    ∴当t=2时,S四边形PBQC最大=1.

    考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.

    相关试卷

    2023年湖北省襄阳市襄城区中考数学适应性试卷(含解析): 这是一份2023年湖北省襄阳市襄城区中考数学适应性试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    襄阳市襄城区重点中学2022年中考数学考试模拟冲刺卷含解析: 这是一份襄阳市襄城区重点中学2022年中考数学考试模拟冲刺卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,cs60°的值等于,-sin60°的倒数为,下列说法等内容,欢迎下载使用。

    2022年襄阳市襄城区中考数学考前最后一卷含解析: 这是一份2022年襄阳市襄城区中考数学考前最后一卷含解析,共18页。试卷主要包含了下列计算结果正确的是,“绿水青山就是金山银山”等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map