搜索
    上传资料 赚现金
    英语朗读宝

    2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析

    2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析第1页
    2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析第2页
    2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析

    展开

    这是一份2022届新疆维吾尔自治区阿克苏地区沙雅县中考数学对点突破模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,不等式组的解集在数轴上表示为,下列计算正确的是等内容,欢迎下载使用。
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,半径为的中,弦,所对的圆心角分别是,,若,,则弦的长等于( )
    A.B.C.D.
    2.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是( )
    A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)
    3.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    4.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是( )
    A.B.
    C.D.
    5.已知直线y=ax+b(a≠0)经过第一,二,四象限,那么直线y=bx-a一定不经过( )
    A.第一象限
    B.第二象限
    C.第三象限
    D.第四象限
    6.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
    A.①④⑤B.①②④C.①③④D.①③⑤
    7.不等式组的解集在数轴上表示为( )
    A.B.C.D.
    8.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
    A.B.C.D.
    9.下列计算正确的是( )
    A.2x+3x=5xB.2x•3x=6xC.(x3)2=5D.x3﹣x2=x
    10.如果(x-2)(x+3)=x2+px+q,那么p、q的值是( )
    A.p=5,q=6B.p=1,q=-6C.p=1,q=6D.p=5,q=-6
    二、填空题(共7小题,每小题3分,满分21分)
    11.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.
    12.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
    13.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.
    14.在中,,,点分别是边的中点,则的周长是__________.
    15.分解因:=______________________.
    16.当a,b互为相反数,则代数式a2+ab﹣2的值为_____.
    17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .
    三、解答题(共7小题,满分69分)
    18.(10分)已知△ABC在平面直角坐标系中的位置如图所示.分别写出图中点A和点C的坐标;画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;求点A旋转到点A′所经过的路线长(结果保留π).
    19.(5分)计算:()-1+()0+-2cs30°.
    20.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;该产品第一年的利润为20万元,那么该产品第一年的售价是多少?第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
    21.(10分)已知抛物线y=ax2+(3b+1)x+b﹣3(a>0),若存在实数m,使得点P(m,m)在该抛物线上,我们称点P(m,m)是这个抛物线上的一个“和谐点”.
    (1)当a=2,b=1时,求该抛物线的“和谐点”;
    (2)若对于任意实数b,抛物线上恒有两个不同的“和谐点”A、B.
    ①求实数a的取值范围;
    ②若点A,B关于直线y=﹣x﹣(+1)对称,求实数b的最小值.
    22.(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
    23.(12分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
    (1)用列表或画树状图的方法写出点Q的所有可能坐标;
    (1)求点Q落在直线y=﹣x﹣1上的概率.
    24.(14分)如图,我们把一个半圆和抛物线的一部分围成的封闭图形称为“果圆”,已知分别为“果圆”与坐标轴的交点,直线与“果圆”中的抛物线交于两点
    (1)求“果圆”中抛物线的解析式,并直接写出“果圆”被轴截得的线段的长;
    (2)如图,为直线下方“果圆”上一点,连接,设与交于,的面积记为,的面积即为,求的最小值
    (3)“果圆”上是否存在点,使,如果存在,直接写出点坐标,如果不存在,请说明理由
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=1,从而求解.
    解:作AH⊥BC于H,作直径CF,连结BF,如图,
    ∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,
    ∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,
    ∵AH⊥BC,∴CH=BH,
    ∵CA=AF,∴AH为△CBF的中位线,∴AH=BF=1.
    ∴,
    ∴BC=2BH=2.
    故选A.
    “点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.
    2、A
    【解析】
    直接利用平移的性质结合轴对称变换得出对应点位置.
    【详解】
    如图所示:
    顶点A2的坐标是(4,-3).
    故选A.
    【点睛】
    此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.
    3、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    4、B
    【解析】
    选项A中,由一次函数y=x+k的图象知k0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.
    故选B.
    5、D
    【解析】
    根据直线y=ax+b(a≠0)经过第一,二,四象限,可以判断a、b的正负,从而可以判断直线y=bx-a经过哪几个象限,不经过哪个象限,本题得以解决.
    【详解】
    ∵直线y=ax+b(a≠0)经过第一,二,四象限,
    ∴a<0,b>0,
    ∴直线y=bx-a经过第一、二、三象限,不经过第四象限,
    故选D.
    【点睛】
    本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
    6、D
    【解析】
    根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
    【详解】
    解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
    故①正确
    则AE=10﹣4=6
    t=10时,△BPQ的面积等于
    ∴AB=DC=8

    故②错误
    当14<t<22时,
    故③正确;
    分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
    则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
    此时,满足条件的点有4个,故④错误.
    ∵△BEA为直角三角形
    ∴只有点P在DC边上时,有△BPQ与△BEA相似
    由已知,PQ=22﹣t
    ∴当或时,△BPQ与△BEA相似
    分别将数值代入
    或,
    解得t=(舍去)或t=14.1
    故⑤正确
    故选:D.
    【点睛】
    本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
    形判定,应用了分类讨论和数形结合的数学思想.
    7、A
    【解析】
    分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.
    【详解】
    解不等式①得,x>1;
    解不等式②得,x>2;
    ∴不等式组的解集为:x≥2,
    在数轴上表示为:
    故选A.
    【点睛】
    本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.
    8、A
    【解析】
    由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
    【详解】
    ∵△ABC中,AC=BC,过点C作CD⊥AB,
    ∴AD=DB=6,∠BDC=∠ADC=90°,
    ∵AE=5,DE∥BC,
    ∴AC=2AE=10,∠EDC=∠BCD,
    ∴sin∠EDC=sin∠BCD=,
    故选:A.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
    9、A
    【解析】
    依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.
    【详解】
    A、2x+3x=5x,故A正确;
    B、2x•3x=6x2,故B错误;
    C、(x3)2=x6,故C错误;
    D、x3与x2不是同类项,不能合并,故D错误.
    故选A.
    【点睛】
    本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.
    10、B
    【解析】
    先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.
    【详解】
    解:∵(x-2)(x+3)=x2+x-1,
    又∵(x-2)(x+3)=x2+px+q,
    ∴x2+px+q=x2+x-1,
    ∴p=1,q=-1.
    故选:B.
    【点睛】
    本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.
    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.
    【详解】
    解:列表如下:
    所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,
    则P(恰好是两个连续整数)=
    故答案为.
    【点睛】
    此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.
    12、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
    【解析】
    (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
    (2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
    (1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
    【详解】
    解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
    解得:b=﹣2,c=﹣1,
    ∴抛物线的解析式为.
    ∵令,解得:,,
    ∴点B的坐标为(﹣1,0).
    故答案为﹣2;﹣1;(﹣1,0).
    (2)存在.理由:如图所示:
    ①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
    设AC的解析式为y=kx﹣1.
    ∵将点A的坐标代入得1k﹣1=0,解得k=1,
    ∴直线AC的解析式为y=x﹣1,
    ∴直线CP1的解析式为y=﹣x﹣1.
    ∵将y=﹣x﹣1与联立解得,(舍去),
    ∴点P1的坐标为(1,﹣4).
    ②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
    ∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
    ∴直线AP2的解析式为y=﹣x+1.
    ∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
    ∴点P2的坐标为(﹣2,5).
    综上所述,P的坐标是(1,﹣4)或(﹣2,5).
    (1)如图2所示:连接OD.
    由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
    由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
    ∴D是AC的中点.
    又∵DF∥OC,
    ∴DF=OC=,
    ∴点P的纵坐标是,
    ∴,解得:x=,
    ∴当EF最短时,点P的坐标是:(,)或(,).
    13、1
    【解析】
    分析: 由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.
    详解: 在BC上取一点G,使得BG=1,如图,
    ∵,,
    ∴,
    ∵∠PBG=∠PBC,
    ∴△PBG∽△CBP,
    ∴,
    ∴PG=PC,
    当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.
    故答案为1
    点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
    14、
    【解析】
    首先利用勾股定理求得斜边长,然后利用三角形中位线定理求得答案即可.
    【详解】
    解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,
    ∴AB===5,
    ∵点D、E、F分别是边AB、AC、BC的中点,
    ∴DE=BC,DF=AC,EF=AB,
    ∴C△DEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.
    故答案为:6.
    【点睛】
    本题考查了勾股定理和三角形中位线定理.
    15、 (x-2y)(x-2y+1)
    【解析】
    根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
    【详解】
    =x2-4xy+4y2-2y+x
    =(x-2y)2+x-2y
    =(x-2y)(x-2y+1)
    16、﹣1.
    【解析】
    分析:
    由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.
    详解:
    ∵a与b互为相反数,
    ∴a+b=0,
    ∴a1+ab-1=a(a+b)-1=0-1=-1.
    故答案为:-1.
    点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.
    17、y3>y1>y2.
    【解析】
    试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.
    考点:二次函数的函数值比较大小.
    三、解答题(共7小题,满分69分)
    18、(1)、(2)见解析(3)
    【解析】
    试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.
    试题解析:(1)A(0,4)C(3,1)
    (2)如图所示:
    (3)根据勾股定理可得:AC=3,则.
    考点:图形的旋转、扇形的弧长计算公式.
    19、4+2.
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
    【详解】
    原式=3+1+3-2×
    =4+2.
    20、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.
    【解析】
    (1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;
    (2)构建方程即可解决问题;
    (3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.
    【详解】
    (1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.
    (2)由题意:20=﹣x2+32x﹣2.
    解得:x=16,
    答:该产品第一年的售价是16元.
    (3)由题意:7≤x≤16,
    W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,
    ∵7≤x≤16,
    ∴x=7时,W2有最小值,最小值=18(万元),
    答:该公司第二年的利润W2至少为18万元.
    【点睛】
    本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.
    21、(1)()或(﹣1,﹣1);(1)①2<a<17②b的最小值是
    【解析】
    (1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;
    (1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.
    ①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;
    ②利用二次函数图象的对称性质解答即可.
    【详解】
    (1)当a=1,b=1时,m=1m1+4m+1﹣4,
    解得m=或m=﹣1.
    所以点P的坐标是(,)或(﹣1,﹣1);
    (1)m=am1+(3b+1)m+b﹣3,
    △=9b1﹣4ab+11a.
    ①令y=9b1﹣4ab+11a,对于任意实数b,均有y>2,也就是说抛物线y=9b1﹣4ab+11的图象都在b轴(横轴)上方.
    ∴△=(﹣4a)1﹣4×9×11a<2.
    ∴2<a<17.
    ②由“和谐点”定义可设A(x1,y1),B(x1,y1),
    则x1,x1是ax1+(3b+1)x+b﹣3=2的两不等实根,.
    ∴线段AB的中点坐标是:(﹣,﹣).代入对称轴y=x﹣(+1),得
    ﹣=﹣(+1),
    ∴3b+1=+a.
    ∵a>2,>2,a•=1为定值,
    ∴3b+1=+a≥1=1,
    ∴b≥.
    ∴b的最小值是.
    【点睛】
    此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.
    22、 (1)2000;(2)2米
    【解析】
    (1)设未知数,根据题目中的的量关系列出方程;
    (2)可以通过平移,也可以通过面积法,列出方程
    【详解】
    解:(1)设该项绿化工程原计划每天完成x米2,
    根据题意得:﹣= 4
    解得:x=2000,
    经检验,x=2000是原方程的解;
    答:该绿化项目原计划每天完成2000平方米;
    (2)设人行道的宽度为x米,根据题意得,
    (20﹣3x)(8﹣2x)=56
    解得:x=2或x=(不合题意,舍去).
    答:人行道的宽为2米.
    23、 (1)见解析;(1)
    【解析】
    试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.
    (1)由题意得
    (1)共有6种等可能情况,符合条件的有1种
    P(点Q在直线y=−x−1上)=.
    考点:概率公式
    点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.
    24、 (1);6;(2)有最小值;(3),.
    【解析】
    (1)先求出点B,C坐标,利用待定系数法求出抛物线解析式,进而求出点A坐标,即可求出半圆的直径,再构造直角三角形求出点D的坐标即可求出BD;
    (2)先判断出要求的最小值,只要CG最大即可,再求出直线EG解析式和抛物线解析式联立成的方程只有一个交点,求出直线EG解析式,即可求出CG,结论得证.
    (3)求出线段AC,BC进而判断出满足条件的一个点P和点B重合,再利用抛物线的对称性求出另一个点P.
    【详解】
    解:(1) 对于直线y=x-3,令x=0,
    ∴y=-3,
    ∴B(0,-3),
    令y=0,
    ∴x-3=0,
    ∴x=4,
    ∴C(4,0),
    ∵抛物线y=x2+bx+c过B,C两点,


    ∴抛物线的解析式为y=;
    令y=0,
    ∴=0,
    ∴x=4或x=-1,
    ∴A(-1,0),
    ∴AC=5,
    如图2,记半圆的圆心为O',连接O'D,
    ∴O'A=O'D=O'C=AC=,
    ∴OO'=OC-O'C=4-=,
    在Rt△O'OD中,OD==2,
    ∴D(0,2),
    ∴BD=2-(-3)=5;
    (2) 如图3,
    ∵A(-1,0),C(4,0),
    ∴AC=5,
    过点E作EG∥BC交x轴于G,
    ∵△ABF的AF边上的高和△BEF的EF边的高相等,设高为h,
    ∴S△ABF=AF•h,S△BEF=EF•h,
    ∴==
    ∵的最小值,
    ∴最小,
    ∵CF∥GE,

    ∴最小,即:CG最大,
    ∴EG和果圆的抛物线部分只有一个交点时,CG最大,
    ∵直线BC的解析式为y=x-3,
    设直线EG的解析式为y=x+m①,
    ∵抛物线的解析式为y=x2-x-3②,
    联立①②化简得,3x2-12x-12-4m=0,
    ∴△=144+4×3×(12+4m)=0,
    ∴m=-6,
    ∴直线EG的解析式为y=x-6,
    令y=0,
    ∴x-6=0,
    ∴x=8,
    ∴CG=4,
    ∴=;
    (3),.理由:
    如图1,∵AC是半圆的直径,
    ∴半圆上除点A,C外任意一点Q,都有∠AQC=90°,
    ∴点P只能在抛物线部分上,
    ∵B(0,-3),C(4,0),
    ∴BC=5,
    ∵AC=5,
    ∴AC=BC,
    ∴∠BAC=∠ABC,
    当∠APC=∠CAB时,点P和点B重合,即:P(0,-3),
    由抛物线的对称性知,另一个点P的坐标为(3,-3),
    即:使∠APC=∠CAB,点P坐标为(0,-3)或(3,-3).
    【点睛】
    本题是二次函数综合题,考查待定系数法,圆的性质,勾股定理,相似三角形的判定和性质,抛物线的对称性,等腰三角形的判定和性质,判断出CG最大时,两三角形面积之比最小是解本题的关键.
    5
    6
    7
    8
    9
    5
    ﹣﹣﹣
    (6、5)
    (7、5)
    (8、5)
    (9、5)
    6
    (5、6)
    ﹣﹣﹣
    (7、6)
    (8、6)
    (9、6)
    7
    (5、7)
    (6、7)
    ﹣﹣﹣
    (8、7)
    (9、7)
    8
    (5、8)
    (6、8)
    (7、8)
    ﹣﹣﹣
    (9、8)
    9
    (5、9)
    (6、9)
    (7、9)
    (8、9)
    ﹣﹣﹣
    1
    1
    -1
    (1,-1)
    (1,-1)
    -1
    (1,-1)
    (1,-1)
    -2
    (1,-2)
    (1,-2)

    相关试卷

    新疆维吾尔自治区阿克苏地区沙雅县2023-2024学年九上数学期末联考模拟试题含答案:

    这是一份新疆维吾尔自治区阿克苏地区沙雅县2023-2024学年九上数学期末联考模拟试题含答案,共7页。试卷主要包含了如图,是的外接圆,是直径,抛物线的顶点坐标是,已知点等内容,欢迎下载使用。

    2022年新疆阿克苏地区沙雅县中考考前最后一卷数学试卷含解析:

    这是一份2022年新疆阿克苏地区沙雅县中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了关于x的一元二次方程等内容,欢迎下载使用。

    2022届重庆清化中学中考数学对点突破模拟试卷含解析:

    这是一份2022届重庆清化中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了如图,,,则的大小是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map