2022届苏州市高新区市级名校中考押题数学预测卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.不等式组的解集在数轴上可表示为( )
A.B.C.D.
2.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1B.C.-1D.+1
3.如图是一个几何体的三视图,则这个几何体是( )
A.B.C.D.
4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为( )
A.1B.﹣1C.±1D.0
5.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
甲的路线为:A→C→B;
乙的路线为:A→D→E→F→B,其中E为AB的中点;
丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )
A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲
6.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=( )
A.50°B.40°C.30°D.20°
7.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( ).
A.B.C.D.
8.一、单选题
如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的( )
A.点AB.点BC.点CD.点D
9.下列各数中,相反数等于本身的数是( )
A.–1B.0C.1D.2
10.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2B.a<﹣3C.a>﹣bD.a<﹣b
11.对于两组数据A,B,如果sA2>sB2,且,则( )
A.这两组数据的波动相同B.数据B的波动小一些
C.它们的平均水平不相同D.数据A的波动小一些
12.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )
A.8.1×106B.8.1×105C.81×105D.81×104
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D′处,点C的对应点C′的坐标为______.
14.关于的方程有增根,则______.
15.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .
16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
17.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____.
18.计算的结果是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
20.(6分)如图,在四边形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度数;四边形ABCD的面积(结果保留根号).
21.(6分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
22.(8分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
23.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:
(1)a= %,并补全条形图.
(2)在本次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
24.(10分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).
(1)当时,
①在图1中依题意画出图形,并求(用含的式子表示);
②探究线段,,之间的数量关系,并加以证明;
(2)当时,直接写出线段,,之间的数量关系.
25.(10分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
26.(12分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣相交于点A(m,2).
(1)求直线y=kx+m的表达式;
(2)直线y=kx+m与双曲线y=﹣的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.
27.(12分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,
)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
2、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
3、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
4、B
【解析】
根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
【详解】
解:把x=0代入方程得:a2﹣1=0,
解得:a=±1,
∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
∴a﹣1≠0,
即a≠1,
∴a的值是﹣1.
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.
5、A
【解析】
分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
图3与图1中,三个三角形相似,所以 ====.
∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
∴甲=丙.∴甲=乙=丙.
故选A.
点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
6、B
【解析】
试题解析:延长ED交BC于F,
∵AB∥DE,
∴
在△CDF中,
故
故选B.
7、B
【解析】
先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.
【详解】
由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.
【点睛】
本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.
8、D
【解析】
根据全等三角形的性质和已知图形得出即可.
【详解】
解:∵△MNP≌△MEQ,
∴点Q应是图中的D点,如图,
故选:D.
【点睛】
本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.
9、B
【解析】
根据相反数的意义,只有符号不同的数为相反数.
【详解】
解:相反数等于本身的数是1.
故选B.
【点睛】
本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.
10、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
11、B
【解析】
试题解析:方差越小,波动越小.
数据B的波动小一些.
故选B.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
12、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
810 000=8.1×1.
故选B.
【点睛】
本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(2,1)
【解析】
由已知条件得到AD′=AD=,AO=AB=1,根据勾股定理得到OD′==1,于是得到结论.
【详解】
解:∵ AD′=AD=,AO=AB=1,
∴OD′==1,
∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案为:(2,1)
【点睛】
本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.
14、-1
【解析】
根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.
故答案为-1.
点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.
15、2
【解析】
试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴,整理得,解得或(舍去),故正方形ADEF的边长是2.
考点:反比例函数系数k的几何意义.
16、
【解析】
将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
【详解】
解:将三个小区分别记为A、B、C,
列表如下:
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为=.
故答案为:.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
17、
【解析】
分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.
详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;
用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:
Aa、Ab、Ba、Bb.
所以颜色搭配正确的概率是.
故答案为:.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
18、1
【解析】
分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
详解:原式
故答案为:1.
点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
20、(1);
(2)
【解析】
(1)连接AC,由勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACD的形状,进而可求出∠BAD的度数;
(2)由(1)可知△ABC和△ADC是Rt△,再根据S四边形ABCD=S△ABC+S△ADC即可得出结论.
【详解】
解:(1)连接AC,如图所示:
∵AB=BC=1,∠B=90°
∴AC=,
又∵AD=1,DC=,
∴ AD2+AC2=3 CD2=()2=3
即CD2=AD2+AC2
∴∠DAC=90°
∵AB=BC=1
∴∠BAC=∠BCA=45°
∴∠BAD=135°;
(2)由(1)可知△ABC和△ADC是Rt△,
∴S四边形ABCD=S△ABC+S△ADC=1×1×+1××= .
【点睛】
考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
21、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
②根据一次函数的性质结合自变量的取值范围即可求解.
【详解】
(1)由题意,得,
解得,
故a,b的值分别是120,180;
(2)①由题意,得y=120x+180(40-x),
化简得y=-60x+7200,
∵普通时段的培训学时不会超过其他两个时段总学时的,
∴x≤(40-x),
解得x≤,
又x≥0,
∴0≤x≤;
②∵y=-60x+7200,
k=-60<0,
∴y随x的增大而减小,
∴x取最大值时,y有最小值,
∵0≤x≤;
∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
22、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
23、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
(2)根据众数和中位数的定义即可求出答案;
(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
【详解】
解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
该扇形所对圆心角的度数为310°×10%=31°,
参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:
故答案为10;
(2)抽样调查中总人数为100人,
结合条形统计图可得:众数是5,中位数是1.
(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
活动时间不少于1天的学生人数大约有5400人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)①;②;(2)
【解析】
(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
【详解】
(1)当时,
①画出的图形如图1所示,
∵为等边三角形,
∴.
∵为等边三角形的中线
∴是的垂直平分线,
∵为线段上的点,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
∴;
②;
如图2,延长到点,使得,连接,作于点.
∵,点在上,
∴.
∵点在的延长线上,,
∴.
∴.
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
即为底角为的等腰三角形.
∴.
∴.
(2)如图3,当时,
在上取一点使,
∵为等边三角形,
∴.
∵为等边三角形的中线,
∵为线段上的点,
∴是的垂直平分线,
∴.
∵,
∴,.
∵线段为线段绕点顺时针旋转所得,
∴.
∴.
∴,
又∵,,
∴.
∴.
∵于点,
∴,.
∵在等边三角形中,为中线,点在上,
∴,
∴.
∴.
【点睛】
此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
25、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【解析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
26、(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(,0).
【解析】
(1)将A代入反比例函数中求出m的值,即可求出直线解析式,
(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.
【详解】
解:(1)∵点A(m,2)在双曲线上,
∴m=﹣1,
∴A(﹣1,2),直线y=kx﹣1,
∵点A(﹣1,2)在直线y=kx﹣1上,
∴y=﹣3x﹣1.
(2) ,解得或,
∴B(,﹣3),
∴AB==,设P(n,0),
则有(n﹣)2+32=
解得n=5或,
∴P1(5,0),P2(,0).
【点睛】
本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.
27、解:设OC=x,
在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.
在Rt△BOC中,∵∠BCO=30°,∴.
∵AB=OA﹣OB=,解得.
∴OC=5米.
答:C处到树干DO的距离CO为5米.
【解析】
解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.
【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.
学员
培训时段
培训学时
培训总费用
小明
普通时段
20
6000元
高峰时段
5
节假日时段
15
小华
普通时段
30
5400元
高峰时段
2
节假日时段
8
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份浙江省丽水市级名校2021-2022学年中考押题数学预测卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,今年春节某一天早7,已知点A等内容,欢迎下载使用。
昌都市市级名校2021-2022学年中考押题数学预测卷含解析: 这是一份昌都市市级名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了下列运算正确的是,-的立方根是等内容,欢迎下载使用。
2021-2022学年吉林省前郭县市级名校中考押题数学预测卷含解析: 这是一份2021-2022学年吉林省前郭县市级名校中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图,点A,B在双曲线y=,若关于x的一元二次方程,如图,双曲线y=,已知,,且,则的值为,二元一次方程组的解为,一、单选题等内容,欢迎下载使用。