|试卷下载
搜索
    上传资料 赚现金
    2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析01
    2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析02
    2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022届云南省玉溪市红塔区市级名校初中数学毕业考试模拟冲刺卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,若|a|=﹣a,则a为,-4的相反数是,下列计算正确的是.,关于x的正比例函数,y=,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为
    A.1 B.3 C.0 D.1或3
    2.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )

    A. B. C. D.
    3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为(  )

    A. B. C. D.
    4.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
    人数
    3
    4
    2
    1
    分数
    80
    85
    90
    95
    A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
    5.若|a|=﹣a,则a为(  )
    A.a是负数 B.a是正数 C.a=0 D.负数或零
    6.-4的相反数是( )
    A. B. C.4 D.-4
    7.下列计算正确的是(    ).
    A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
    C.x6÷x3=x2 D.=2
    8.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )
    A.2 B.-2 C.±2 D.-
    9.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为(  )
    A.3.38×107 B.33.8×109 C.0.338×109 D.3.38×1010
    10.下列计算正确的是(  )
    A.a3﹣a2=a B.a2•a3=a6
    C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
    二、填空题(共7小题,每小题3分,满分21分)
    11.二次根式中字母x的取值范围是_____.
    12.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.

    13.有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_____.
    14.已知平面直角坐标系中的点A (2,﹣4)与点B关于原点中心对称,则点B的坐标为_____
    15.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.

    16.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为_____.

    17.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).
    三、解答题(共7小题,满分69分)
    18.(10分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.
    求反比例函数的表达式及点B的坐标;在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
    19.(5分)如图在由边长为1个单位长度的小正方形组成的12×12网格中,已知点A,B,C,D均为网格线的交点在网格中将△ABC绕点D顺时针旋转90°画出旋转后的图形△A1B1C1;在网格中将△ABC放大2倍得到△DEF,使A与D为对应点.

    20.(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.

    21.(10分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.
    22.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.

    (1)求证:△PFA∽△ABE;
    (2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
    (3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:   .
    23.(12分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是   ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   .

    24.(14分)先化简代数式,再从﹣1,0,3中选择一个合适的a的值代入求值.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.
    【详解】
    ∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,
    ∴(m﹣1)+1+m2﹣5m+3=0,
    ∴m2﹣4m+3=0,
    ∴m=1或m=3,
    但当m=1时方程的二次项系数为0,
    ∴m=3.
    故答案选B.
    【点睛】
    本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.
    2、B
    【解析】
    解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
    当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
    当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
    故选B.
    3、A
    【解析】
    转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可
    【详解】
    奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:
    P(奇数)= = .故此题选A.
    【点睛】
    此题主要考查了几何概率,正确应用概率公式是解题关键.
    4、B
    【解析】
    根据众数及平均数的定义,即可得出答案.
    【详解】
    解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
    故选:B.
    【点睛】
    本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
    5、D
    【解析】
    根据绝对值的性质解答.
    【详解】
    解:当a≤0时,|a|=-a,
    ∴|a|=-a时,a为负数或零,
    故选D.
    【点睛】
    本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
    6、C
    【解析】
    根据相反数的定义即可求解.
    【详解】
    -4的相反数是4,故选C.
    【点晴】
    此题主要考查相反数,解题的关键是熟知相反数的定义.
    7、D
    【解析】
    分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
    详解:(x+y)2=x2+2xy+y2,A错误;
    (-xy2)3=-x3y6,B错误;
    x6÷x3=x3,C错误;
    ==2,D正确;
    故选D.
    点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.
    8、B
    【解析】
    根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.
    【详解】
    由题意得:m2-3=1,且m+1<0,
    解得:m=-2,
    故选:B.
    【点睛】
    此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.
    9、D
    【解析】
    根据科学记数法的定义可得到答案.
    【详解】
    338亿=33800000000=,
    故选D.
    【点睛】
    把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
    10、D
    【解析】
    各项计算得到结果,即可作出判断.
    解:A、原式不能合并,不符合题意;
    B、原式=a5,不符合题意;
    C、原式=a2﹣2ab+b2,不符合题意;
    D、原式=﹣a6,符合题意,
    故选D

    二、填空题(共7小题,每小题3分,满分21分)
    11、x≤1
    【解析】
    二次根式有意义的条件就是被开方数是非负数,即可求解.
    【详解】
    根据题意得:1﹣x≥0,
    解得x≤1.
    故答案为:x≤1
    【点睛】
    主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    12、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.
    【解析】
    变换图形2,可先旋转,然后平移与图2拼成一个矩形.
    【详解】
    先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.
    故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.
    【点睛】
    本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
    13、
    【解析】
    分析:直接利用中心对称图形的性质结合概率求法直接得出答案.
    详解:∵等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,
    ∴从中随机抽取一张,卡片上的图形是中心对称图形的概率是:.
    故答案为.
    点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键.
    14、(﹣2,4)
    【解析】
    根据点P(x,y)关于原点对称的点为(-x,-y)即可得解.
    【详解】
    解:∵点A (2,-4)与点B关于原点中心对称,
    ∴点B的坐标为:(-2,4).
    故答案为:(-2,4).
    【点睛】
    此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的关系是解题关键.
    15、
    【解析】
    首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
    【详解】
    解:
    连接AC

    AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
    ∴AC=CB,BC2+AC2=AB2,
    ∴∠BCA=90°,
    ∴∠ABC=45°,
    ∴∠ABC的正弦值为.
    故答案为:.
    【点睛】
    此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
    16、
    【解析】
    如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.
    【详解】
    解:∵四边形OABC是矩形,
    ∴OA=BC,AB=OC,tan∠BOC==,
    ∴AB=2OA,
    ∵,OB=,
    ∴OA=2,AB=2.∵OA′由OA翻折得到,
    ∴OA′= OA=2.
    如图,过点A′作A′D⊥x轴与点D;
    设A′D=a,OD=b;
    ∵四边形ABCO为矩形,
    ∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;
    设AB=OC=a,BC=AO=b;
    ∵OB=,tan∠BOC=,
    ∴,
    解得: ;
    由题意得:A′O=AO=2;△ABO≌△A′BO;
    由勾股定理得:x2+y2=2①,
    由面积公式得:xy+2××2×2=(x+2)×(y+2)②;
    联立①②并解得:x=,y=.

    故答案为(−,)
    【点睛】
    该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.
    17、12π
    【解析】
    根据圆锥的侧面展开图是扇形可得,
    ,∴该圆锥的侧面面积为:12π,
    故答案为12π.

    三、解答题(共7小题,满分69分)
    18、(1),;(2)P,.
    【解析】
    试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
    试题解析:(1)把点A(1,a)代入一次函数y=-x+4,
    得:a=-1+4,解得:a=3,
    ∴点A的坐标为(1,3).
    把点A(1,3)代入反比例函数y=,
    得:3=k,
    ∴反比例函数的表达式y=,
    联立两个函数关系式成方程组得:,
    解得:,或,
    ∴点B的坐标为(3,1).
    (2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.

    ∵点B、D关于x轴对称,点B的坐标为(3,1),
    ∴点D的坐标为(3,- 1).
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得:,
    解得:,
    ∴直线AD的解析式为y=-2x+1.
    令y=-2x+1中y=0,则-2x+1=0,
    解得:x=,
    ∴点P的坐标为(,0).
    S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)
    =×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)
    =.
    考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.
    19、(1)见解析(2)见解析
    【解析】
    (1)根据旋转变换的定义和性质求解可得;
    (2)根据位似变换的定义和性质求解可得.
    【详解】
    解:(1)如图所示,△A1B1C1即为所求;

    (2)如图所示,△DEF即为所求.
    【点睛】
    本题主要考查作图﹣位似变换与旋转变换,解题的关键是掌握位似变换与旋转变换的定义与性质.
    20、(1);(2)1或9.
    【解析】
    试题分析:(1)把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令△=0,即可求得m的值.
    试题解析:
    (1)根据题意,把A(-2,b)的坐标分别代入一次函数和反比例函数表达式,得,
    解得,
    所以一次函数的表达式为y=x+5.
    (2)将直线AB向下平移m(m>0)个单位长度后,直线AB对应的函数表达式为y=x+5-m.由得, x2+(5-m)x+8=0.Δ=(5-m)2-4××8=0,
    解得m=1或9.
    点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.
    21、 (1)见解析;(2).
    【解析】
    (1)画树状图列举出所有情况;
    (2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.
    【详解】
    解:(1)根据题意,可以画出如下的树形图:

    从树形图可以看出,两次摸球出现的所有可能结果共有6种.
    (2)由树状图知摸出的两个小球号码之和等于4的有2种结果,
    ∴摸出的两个小球号码之和等于4的概率为=.
    【点睛】
    本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.
    22、(1)证明见解析;(2)3或.(3)或0<
    【解析】
    (1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
    (2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
    (3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴AD∥BC.

    ∴∠PAF=∠AEB.
    又∵PF⊥AE,

    ∴△PFA∽△ABE.
    (2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
    则有PE∥AB
    ∴四边形ABEP为矩形,
    ∴PA=EB=3,即x=3.
    情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
    ∵∠PAF=∠AEB,
    ∴∠PEF=∠PAF.
    ∴PE=PA.
    ∵PF⊥AE,
    ∴点F为AE的中点,




    ∴满足条件的x的值为3或
    (3) 或
    【点睛】
    两组角对应相等,两三角形相似.
    23、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);
    【解析】
    (1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.
    【详解】
    (1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);

    (2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),
    故答案为(1)(2,-2);(2)(1,0)
    【点睛】
    此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.
    24、,1
    【解析】
    先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a=3,计算即可得到答案.
    【详解】
    原式===,
    当a=3时(a≠﹣1,0),原式=1.
    【点睛】
    本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.

    相关试卷

    江苏省镇江丹阳市市级名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份江苏省镇江丹阳市市级名校2022年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了已知抛物线y=ax2+bx+c,已知点A等内容,欢迎下载使用。

    甘肃泰安县市级名校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份甘肃泰安县市级名校2022年初中数学毕业考试模拟冲刺卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据等内容,欢迎下载使用。

    2022年浙江省仙居县市级名校初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年浙江省仙居县市级名校初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了如图,内接于,若,则,估计介于,下列计算结果为a6的是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map