年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析

    2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析第1页
    2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析第2页
    2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届新疆阿克苏市沙雅县中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了下列各式等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列图形中,属于中心对称图形的是(  )
    A. B.
    C. D.
    2.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    3.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    4.已知反比例函数y=﹣,当1<x<3时,y的取值范围是(  )
    A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣2
    5.在实数π,0,,﹣4中,最大的是(  )
    A.π B.0 C. D.﹣4
    6.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
    A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
    7.一元二次方程4x2﹣2x+=0的根的情况是( )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.没有实数根 D.无法判断
    8.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是(  )

    A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E
    9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )

    A.60° B.50° C.40° D.30°
    10.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是 ( )
    A.①②③ B.①③⑤ C.②③④ D.②④⑤
    11.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )

    A.2﹣ B.1 C. D.﹣l
    12.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在每个小正方形的边长为1的网格中,A,B为格点
    (Ⅰ)AB的长等于__
    (Ⅱ)请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且△ABC的面积等于,并简要说明点C的位置是如何找到的__________________

    14.当 __________时,二次函数 有最小值___________.
    15.分解因式:ax2﹣2ax+a=___________.
    16.如图,在Rt△ABC中,∠C=90°,AC=8,BC=1.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′、),那么△ABC与△A′B′C′的重叠部分的面积是_________.

    17.如图,矩形中,,,将矩形沿折叠,点落在点处.则重叠部分的面积为______.

    18.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.

    20.(6分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.

    21.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.
    (1)填空_______,_______,数学成绩的中位数所在的等级_________.
    (2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;
    (3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.
    ①如下分数段整理样本
    等级等级
    分数段
    各组总分
    人数



    4


    843



    574



    171
    2
    ②根据上表绘制扇形统计图

    22.(8分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    23.(8分)(1)计算:()﹣1+﹣(π﹣2018)0﹣4cos30°
    (2)解不等式组:,并把它的解集在数轴上表示出来.
    24.(10分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   °;
    (2)请补全条形统计图;
    (3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
    25.(10分)如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
    (1)求该反比例函数的解析式.
    (2)求S与t的函数关系式;并求当S=时,对应的t值.
    (3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.

    26.(12分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
    ∵ ∴
          
    (思考)在上述问题中,h1,h1与h的数量关系为: .
    (探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
    (应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
    27.(12分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
    (1)求直线AB的函数关系式;
    (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
    (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    2、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    4、D
    【解析】
    根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.
    【详解】
    解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.
    故选D.
    【点睛】
    本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.
    5、C
    【解析】
    根据实数的大小比较即可得到答案.
    【详解】
    解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.
    【点睛】
    本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
    6、B
    【解析】
    【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
    【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
    ∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;

    B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;

    C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
    ∵AF//CE,∴∠FAO=∠ECO,
    又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
    ∴AF CE,∴四边形AECF是平行四边形,故不符合题意;

    D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
    ∴∠ABE=∠CDF,
    又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
    ∴AE//CF,
    ∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
    故选B.

    【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
    7、B
    【解析】
    试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4× =0,
    ∴一元二次方程4x2﹣2x+=0有两个相等的实数根.
    故选B.
    考点:根的判别式.
    8、C
    【解析】
    根据平行线性质和全等三角形的判定定理逐个分析.
    【详解】
    由,得∠B=∠D,
    因为,
    若≌,则还需要补充的条件可以是:
    AB=DE,或∠E=∠A, ∠EFD=∠ACB,
    故选C
    【点睛】
    本题考核知识点:全等三角形的判定. 解题关键点:熟记全等三角形判定定理.
    9、C
    【解析】
    试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
    考点:平行线的性质.
    10、D
    【解析】
    根据实数的运算法则即可一一判断求解.
    【详解】
    ①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= ,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.
    故选D.
    11、D
    【解析】
    ∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
    ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
    ∴AD⊥BC,B′C′⊥AB,
    ∴AD=BC=1,AF=FC′=AC′=1,
    ∴DC′=AC′-AD=-1,
    ∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
    故选D.

    【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
    12、C
    【解析】
    根据中位数的定义进行解答
    【详解】
    将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
    【点睛】
    本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、 取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【解析】
    (Ⅰ)利用勾股定理计算即可;
    (Ⅱ)取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【详解】
    解:(Ⅰ)AB= =,
    故答案为.
    (Ⅱ)如图取格点P、N(使得S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.

    故答案为:取格点P、N(S△PAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求.
    【点睛】
    本题考查作图﹣应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.
    14、1 5
    【解析】
    二次函数配方,得:,所以,当x=1时,y有最小值5,
    故答案为1,5.
    15、a(x-1)1.
    【解析】
    先提取公因式a,再对余下的多项式利用完全平方公式继续分解.
    【详解】
    解:ax1-1ax+a,
    =a(x1-1x+1),
    =a(x-1)1.
    【点睛】
    本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    16、
    【解析】
    先求得OD,AE,DE的值,再利用S四边形ODEF=S△AOF-S△ADE即可.
    【详解】

    如图,OA’=OA=4,则OD=OA’=3,OD=3
    ∴AD=1,可得DE=,AE =
    ∴S四边形ODEF=S△AOF-S△ADE=×3×4-××=.
    故答案为.
    【点睛】
    本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.
    17、10
    【解析】
    根据翻折的特点得到,.设,则.在中,,即,解出x,再根据三角形的面积进行求解.
    【详解】
    ∵翻折,∴,,
    又∵,
    ∴,
    ∴.设,则.
    在中,,即,
    解得,
    ∴,
    ∴.
    【点睛】
    此题主要考查勾股定理,解题的关键是熟知翻折的性质及勾股定理的应用.
    18、
    【解析】
    由题意易得四边形ABFE是正方形,
    设AB=1,CF=x,则有BC=x+1,CD=1,
    ∵四边形CDEF和矩形ABCD相似,
    ∴CD:BC=FC:CD,
    即1:(x+1)=x:1,
    ∴x=或x=(舍去),
    ∴ =,
    故答案为.

    【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(1).
    【解析】
    (1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
    【详解】
    解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
    ∴AB=AE=4,
    ∴DE= ,
    ∴EC=CD-DE=4-1;
    (1)∵sin∠DEA= ,
    ∴∠DEA=30°,
    ∴∠EAB=30°,
    ∴图中阴影部分的面积为:
    S扇形FAB-S△DAE-S扇形EAB=

    【点睛】
    此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.
    20、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.
    【解析】
    (1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;
    (2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;
    (3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.
    【详解】
    解:(1)60+20=80(km),
    (h)
    ∴连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h.
    (2)设所求函数表达式为y=kx+b(k≠0),
    将点(0,60)、代入y=kx+b,
    得: 解得:
    ∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为
    (3)设线段ED对应的函数表达式为y=mx+n(m≠0)
    将点代入y=mx+n,
    得: 解得:
    ∴线段ED对应的函数表达式为
    解方程组得
    ∴机场大巴与货车相遇地到机场C的路程为km.

    【点睛】
    本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
    21、(1)6;8;B;(2)120人;(3)113分.
    【解析】
    (1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;
    (2)根据表格中的数据可以求得D等级的人数;
    (3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数.
    【详解】
    (1)本次抽查的学生有:(人),

    数学成绩的中位数所在的等级B,
    故答案为:6,11,B;
    (2)120(人),
    答:D等级的约有120人;
    (3)由表可得,
    A等级学生的数学成绩的平均分数:(分),
    即A等级学生的数学成绩的平均分是113分.
    【点睛】
    本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.
    22、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    23、 (1)-3;(2).
    【解析】
    分析:
    (1)代入30°角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;
    (2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.
    (1)原式=
    =
    = -3.
    (2)
    解不等式①得: ,
    解不等式②得:,
    ∴不等式组的解集为:
    不等式组的解集在数轴上表示:

    点睛:熟记零指数幂的意义:,(,为正整数)即30°角的余弦函数值是本题解题的关键.
    24、(1)60,1°.(2)补图见解析;(3)
    【解析】
    (1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;
    (2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;
    (3)根据题意先画出树状图,再根据概率公式即可得出答案.
    【详解】
    (1)接受问卷调查的学生共有30÷50%=60(人),
    扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×=1°,
    故答案为60,1.
    (2)了解的人数有:60﹣15﹣30﹣10=5(人),补图如下:

    (3)画树状图得:

    ​∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,
    ∴恰好抽到1个男生和1个女生的概率为=.
    【点睛】
    此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率=所求情况数与总情况数之比.
    25、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
    【解析】
    (1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
    (2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
    (3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
    【详解】
    解:(1)∵正方形OABC的面积为9,
    ∴点B的坐标为:(3,3),
    ∵点B在反比例函数y=(k>0,x>0)的图象上,
    ∴3=,
    即k=9,
    ∴该反比例函数的解析式为:y= y=(x>0);
    (2)根据题意得:P(t,),
    分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
    若S=,
    则﹣3t+9=,
    解得:t=;
    ②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
    若S=,则9﹣=,
    解得:t=6;
    ∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
    当S=时,对应的t值为或6;
    (3)存在.
    若OB=BF=3,此时CF=BC=3,
    ∴OF=6,
    ∴6=,
    解得:t=;
    若OB=OF=3,则3=,
    解得:t= ;
    若BF=OF,此时点F与C重合,t=3;
    ∴当t=或或3时,使△FBO为等腰三角形.
    【点睛】
    此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
    26、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
    【解析】
    思考:根据等腰三角形的性质,把代数式化简可得.
    探究:当点M在BC延长线上时,连接,可得,化简可得.
    应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
    【详解】
    思考



    h1+h1=h.
    探究
    h1-h1=h.
    理由.连接,


    ∴h1-h1=h.
    应用
    在中,令x=0得y=3;
    令y=0得x=-4,则:
    A(-4,0),B(0,3)
    同理求得C(1,0),

    又因为AC=5,
    所以AB=AC,即△ABC为等腰三角形.
    ①当点M在BC边上时,
    由h1+h1=h得:
    1+My=OB,My=3-1=1,
    把它代入y=-3x+3中求得:

    ∴;
    ②当点M在CB延长线上时,
    由h1-h1=h得:
    My-1=OB,My=3+1=4,
    把它代入y=-3x+3中求得:

    ∴,
    综上,所求点M的坐标为或.
    【点睛】
    本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
    27、(1);(2) (0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.
    【解析】
    (1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.
    (2)用t表示P、M、N 的坐标,由等式得到函数关系式.
    (3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.
    【详解】
    解:(1)x=0时,y=1,
    ∴点A的坐标为:(0,1),
    ∵BC⊥x轴,垂足为点C(3,0),
    ∴点B的横坐标为3,
    当x=3时,y=,
    ∴点B的坐标为(3,),
    设直线AB的函数关系式为y=kx+b, ,
    解得,,
    则直线AB的函数关系式
    (2)当x=t时,y=t+1,
    ∴点M的坐标为(t,t+1),
    当x=t时,
    ∴点N的坐标为
    (0≤t≤3);
    (3)若四边形BCMN为平行四边形,则有MN=BC,
    ∴,
    解得t1=1,t2=2,
    ∴当t=1或2时,四边形BCMN为平行四边形,
    ①当t=1时,MP=,PC=2,
    ∴MC==MN,此时四边形BCMN为菱形,
    ②当t=2时,MP=2,PC=1,
    ∴MC=≠MN,此时四边形BCMN不是菱形.
    【点睛】
    本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.

    相关试卷

    新疆生产建设兵团27团中学2022年中考数学最后冲刺浓缩精华卷含解析:

    这是一份新疆生产建设兵团27团中学2022年中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

    2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map