2022届宁夏中学卫市宣和中学中考数学押题试卷含解析
展开
这是一份2022届宁夏中学卫市宣和中学中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是.,若,,则的值是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为( )
A.2 B.-2 C.4 D.-4
2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330
C.(1﹣10%)2x=330 D.(1+10%)x=330
3.下列美丽的图案中,不是轴对称图形的是( )
A. B. C. D.
4.方程的解是( ).
A. B. C. D.
5.若,,则的值是( )
A.2 B.﹣2 C.4 D.﹣4
6.下列图形中,属于中心对称图形的是( )
A. B.
C. D.
7.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是( )
A.甲超市的利润逐月减少
B.乙超市的利润在1月至4月间逐月增加
C.8月份两家超市利润相同
D.乙超市在9月份的利润必超过甲超市
8.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
文化程度
高中
大专
本科
硕士
博士
人数
9
17
20
9
5
关于这组文化程度的人数数据,以下说法正确的是:( )
A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
9.下列计算正确的是( )
A.2a2﹣a2=1 B.(ab)2=ab2 C.a2+a3=a5 D.(a2)3=a6
10.如图是正方体的表面展开图,则与“前”字相对的字是( )
A.认 B.真 C.复 D.习
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.
12.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.
13.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.
14.计算:____.
15.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.
16.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.
17.反比例函数的图象经过点和,则 ______ .
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).
(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;
(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)
19.(5分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本)
频数(人数)
频率
5
a
0.2
6
18
0.1
7
14
b
8
8
0.16
合计
50
c
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.
20.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
21.(10分)中华文明,源远流长;中华汉字,寓意深广.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整.
请你根据统计图解答下列问题:参加比赛的学生共有____名;在扇形统计图中,m的值为____,表示“D等级”的扇形的圆心角为____度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
22.(10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:
销售单价(元)
x
销售量y(件)
销售玩具获得利润w(元)
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
23.(12分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.
对雾霾了解程度的统计表:
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题.
(1)本次参与调查的学生共有 人,m= ,n= ;
(2)图2所示的扇形统计图中D部分扇形所对应的圆心角是 度;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
24.(14分)如图,∠A=∠B=30°
(1)尺规作图:过点C作CD⊥AC交AB于点D;
(只要求作出图形,保留痕迹,不要求写作法)
(2)在(1)的条件下,求证:BC2=BD•AB.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.
【详解】
过点、作轴,轴,分别于、,
设点的坐标是,则,,
,
,
,
,
,
,
,
,
,,
因为点在反比例函数的图象上,则,
点在反比例函数的图象上,点的坐标是,
.
故选:.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.
2、D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
3、A
【解析】
根据轴对称图形的概念对各选项分析判断即可得解.
【详解】
解:A、不是轴对称图形,故本选项正确;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选A.
【点睛】
本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4、B
【解析】
直接解分式方程,注意要验根.
【详解】
解:=0,
方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,
解这个一元一次方程,得:x=,
经检验,x=是原方程的解.
故选B.
【点睛】
本题考查了解分式方程,解分式方程不要忘记验根.
5、D
【解析】
因为,所以,因为,故选D.
6、B
【解析】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
【详解】
A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
故选B.
【点睛】
本题考查了轴对称与中心对称图形的概念:
中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、D
【解析】
【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
C、8月份两家超市利润相同,此选项正确,不符合题意;
D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
故选D.
【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
8、C
【解析】
根据众数、中位数、平均数以及方差的概念求解.
【详解】
A、这组数据中9出现的次数最多,众数为9,故本选项错误;
B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
C、平均数==12,故本选项正确;
D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
故选C.
【点睛】
本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.
9、D
【解析】
根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.
【详解】
A、2a2﹣a2=a2,故A错误;
B、(ab)2=a2b2,故B错误;
C、a2与a3不是同类项,不能合并,故C错误;
D、(a2)3=a6,故D正确,
故选D.
【点睛】
本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.
10、B
【解析】
分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.
详解:由图形可知,与“前”字相对的字是“真”.
故选B.
点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
【详解】
连接.
∵是的切线,
∴;
∴,
∴当时,线段OP最短,
∴PQ的长最短,
∵在中,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
12、1
【解析】
连接BD.根据圆周角定理可得.
【详解】
解:如图,连接BD.
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠B=90°﹣∠DAB=1°,
∴∠ACD=∠B=1°,
故答案为1.
【点睛】
考核知识点:圆周角定理.理解定义是关键.
13、1或9
【解析】
(1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示
∵OD=OA,
∴∠OAD=∠ODA,
∵AD平分∠BAE,
∴∠OAD=∠ODA=∠DAC,
∴OD//AE,
∵DE是圆的切线,
∴DE⊥OD,
∴∠ODE=∠E=90o,
∴四边形ODEF是矩形,
∴OF=DE,EF=OD=5,
又∵OF⊥AC,
∴AF=,
∴AE=AF+EF=5+4=9.
(2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示
同(1)可得:EF=OD=5,OF=DE=3,
在直角三角形AOF中,AF=,
∴AE=EF-AF=5-4=1.
14、5.
【解析】
试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.
考点:绝对值计算.
15、20000
【解析】
试题分析:1000÷=20000(条).
考点:用样本估计总体.
16、
【解析】
根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.
【详解】
解:多边形的边数是:360°÷40°=9,
则内角和是:(9-2)•180°=1260°.
故答案为1260°.
【点睛】
本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.
17、-1
【解析】
先把点(1,6)代入反比例函数y=,求出k的值,进而可得出反比例函数的解析式,再把点(m,-3)代入即可得出m的值.
【详解】
解:∵反比例函数y=的图象经过点(1,6),
∴6=,解得k=6,
∴反比例函数的解析式为y=.
∵点(m,-3)在此函数图象上上,
∴-3=,解得m=-1.
故答案为-1.
【点睛】
本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题(共7小题,满分69分)
18、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.
【解析】
【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;
(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,
(3)根据勾股定理逆定理解答即可.
【详解】(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,
即OB2+OA12=A1B2,
所以三角形的形状为等腰直角三角形.
【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
19、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;
【解析】
(1)根据百分比=计算即可;
(2)求出a组人数,画出直方图即可;
(3)根据平均数的定义计算即可;
(4)利用样本估计总体的思想解决问题即可;
【详解】
(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
(2)补全图形如下:
(3)所有被调查学生课外阅读的平均本数==6.4(本)
(4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).
【点睛】
本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
20、(1)y=-2x+31,(2)20≤x≤1
【解析】
试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;
(2)根据试销期间销售单价不低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围.
试题解析:
(1)设y与x的函数关系式为y=kx+b,根据题意,得:
解得:
∴y与x的函数解析式为y=-2x+31,
(2) ∵试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,
∴自变量x的取值范围是20≤x≤1.
21、(1)20;(2)40,1;(3).
【解析】
试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;
(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;
(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.
试题解析:解:(1)根据题意得:3÷15%=20(人),故答案为20;
(2)C级所占的百分比为×100%=40%,表示“D等级”的扇形的圆心角为×360°=1°;
故答案为40、1.
(3)列表如下:
所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =.
22、 (1) 1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.
【解析】
(1)由销售单价每涨1元,就会少售出10件玩具得
销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;
(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.
【详解】
解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,
销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.
故答案为: 1000﹣x,﹣10x2+1300x﹣1.
(2)﹣10x2+1300x﹣1=10000
解之得:x1=50,x2=80
答:玩具销售单价为50元或80元时,可获得10000元销售利润.
(3)根据题意得,
解得:44≤x≤46 .
w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250
∵a=﹣10<0,对称轴x=65,
∴当44≤x≤46时,y随x增大而增大.
∴当x=46时,W最大值=8640(元).
答:商场销售该品牌玩具获得的最大利润为8640元.
23、解:(1)400;15%;35%.
(2)1.
(3)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(4)列树状图得:
∵从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,
∴小明参加的概率为:P(数字之和为奇数);
小刚参加的概率为:P(数字之和为偶数).
∵P(数字之和为奇数)≠P(数字之和为偶数),
∴游戏规则不公平.
【解析】
(1)根据“基本了解”的人数以及所占比例,可求得总人数:180÷45%=400人.在根据频数、百分比之间的关系,可得m,n的值:.
(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角:360°×35%=1°.
(3)根据D等级的人数为:400×35%=140,据此补全条形统计图.
(4)用树状图或列表列举出所有可能,分别求出小明和小刚参加的概率,若概率相等,游戏规则公平;反之概率不相等,游戏规则不公平.
24、见解析
【解析】
(1)利用过直线上一点作直线的垂线确定D点即可得;
(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.
【详解】
(1)如图所示,CD即为所求;
(2)∵CD⊥AC,
∴∠ACD=90°
∵∠A=∠B=30°,
∴∠ACB=120°
∴∠DCB=∠A=30°,
∵∠B=∠B,
∴△CDB∽△ACB,
∴,
∴BC2=BD•AB.
【点睛】
考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
相关试卷
这是一份宁夏中学卫市宣和中学2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列命题属于真命题的是,下列实数中,是无理数的是等内容,欢迎下载使用。
这是一份2022-2023学年宁夏中学卫市宣和中学数学七下期末教学质量检测模拟试题含答案,共7页。
这是一份2022年中卫市重点中学中考数学五模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列各式中,正确的是,下列图案中,是轴对称图形的是等内容,欢迎下载使用。