年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析

    2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析第1页
    2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析第2页
    2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届深圳市龙岗区达标名校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了如图所示,,结论等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是(  )
    A.0.69×10﹣6 B.6.9×10﹣7 C.69×10﹣8 D.6.9×107
    2.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是(  )
    A.0≤x0≤1 B.0<x0<1且x0≠
    C.x0<0或x0>1 D.0<x0<1
    3.若55+55+55+55+55=25n,则n的值为(  )
    A.10 B.6 C.5 D.3
    4.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为(  )

    A.x>2 B.0<x<4
    C.﹣1<x<4 D.x<﹣1 或 x>4
    5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )

    A.4 B.4 C.6 D.4
    6.在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
    摸球试验次数
    100
    1000
    5000
    10000
    50000
    100000
    摸出黑球次数
    46
    487
    2506
    5008
    24996
    50007
    根据列表,可以估计出 m 的值是( )
    A.5 B.10 C.15 D.20
    7.如图所示,,结论:①;②;③;④,其中正确的是有( )

    A.1个 B.2个 C.3个 D.4个
    8.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )

    A.2 B.3 C.4 D.5
    9.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A. B. C. D.
    10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②;③ac-b+1=0;④OA·OB=.其中正确结论的个数是( )

    A.4 B.3 C.2 D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在△ABC中,∠C=90°,若tanA=,则sinB=______.
    12.随意的抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全相同),那么这粒豆子落在黑色方格中的可能性是_____.

    13.计算:3﹣1﹣30=_____.
    14.若一组数据1,2,3,的平均数是2,则的值为______.
    15.如图,小阳发现电线杆的影子落在土坡的坡面和地面上,量得,米,与地面成角,且此时测得米的影长为米,则电线杆的高度为__________米.

    16.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(≈1.732,结果精确到0.1米)

    18.(8分)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.
    (参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)

    19.(8分)如图,在中,,为边上的中线,于点E.
    求证:;若,,求线段的长.
    20.(8分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=  .半圆D与数轴有两个公共点,设另一个公共点是C.
    ①直接写出m的取值范围是  .
    ②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.

    21.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
    ()请直接写出袋子中白球的个数.
    ()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
    22.(10分)问题探究
    (1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;
    (2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;

    (3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.

    图3
    23.(12分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同
    (1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .
    (2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率
    24.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
    若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:0.00 000 069=6.9×10-7,
    故选B.
    点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    2、D
    【解析】
    分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.
    详解:二次函数y=(x+a)(x﹣a﹣1),当y=0时,x1=﹣a,x2=a+1,∴对称轴为:x==
    当P在对称轴的左侧(含顶点)时,y随x的增大而减小,由m<n,得:0<x0≤;
    当P在对称轴的右侧时,y随x的增大而增大,由m<n,得:<x0<1.
    综上所述:m<n,所求x0的取值范围0<x0<1.
    故选D.
    点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏.
    3、D
    【解析】
    直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
    【详解】
    解:∵55+55+55+55+55=25n,
    ∴55×5=52n,
    则56=52n,
    解得:n=1.
    故选D.
    【点睛】
    此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
    4、C
    【解析】
    看两函数交点坐标之间的图象所对应的自变量的取值即可.
    【详解】
    ∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
    ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
    故选C.
    【点睛】
    本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
    5、B
    【解析】
    由已知条件可得,可得出,可求出AC的长.
    【详解】
    解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
    故选B.
    【点睛】
    本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
    6、B
    【解析】
    由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.
    【详解】
    解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,
    故选择B.
    【点睛】
    本题考查了概率公式的应用.
    7、C
    【解析】
    根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
    【详解】
    解:如图:

    在△AEB和△AFC中,有

    ∴△AEB≌△AFC;(AAS)
    ∴∠FAM=∠EAN,
    ∴∠EAN-∠MAN=∠FAM-∠MAN,
    即∠EAM=∠FAN;(故③正确)
    又∵∠E=∠F=90°,AE=AF,
    ∴△EAM≌△FAN;(ASA)
    ∴EM=FN;(故①正确)
    由△AEB≌△AFC知:∠B=∠C,AC=AB;
    又∵∠CAB=∠BAC,
    ∴△ACN≌△ABM;(故④正确)
    由于条件不足,无法证得②CD=DN;
    故正确的结论有:①③④;
    故选C.
    【点睛】
    此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
    8、B
    【解析】
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=90°,
    ∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,
    ∵∠GEF=90°,
    ∴∠GEA+∠FEB=90°,
    ∴∠AGE=∠FEB,∠AEG=∠EFB,
    ∴△AEG∽△BFE,
    ∴,
    又∵AE=BE,
    ∴AE2=AG•BF=2,
    ∴AE=(舍负),
    ∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,
    ∴GF的长为3,
    故选B.
    【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.
    9、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    【点睛】
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    10、B
    【解析】
    试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴b>0,
    ∵抛物线与y轴的交点在x轴上方,
    ∴c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴△=b2﹣4ac>0,
    而a<0,
    ∴<0,所以②错误;
    ∵C(0,c),OA=OC,
    ∴A(﹣c,0),
    把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,
    ∴ac﹣b+1=0,所以③正确;
    设A(x1,0),B(x2,0),
    ∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,
    ∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,
    ∴x1•x2=,
    ∴OA•OB=﹣,所以④正确.
    故选B.
    考点:二次函数图象与系数的关系.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
    详解:如图所示:

    ∵∠C=90°,tanA=,
    ∴设BC=x,则AC=2x,故AB=x,
    则sinB=.
    故答案为: .
    点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
    12、
    【解析】
    根据面积法:求出豆子落在黑色方格的面积与总面积的比即可解答.
    【详解】
    ∵共有15个方格,其中黑色方格占5个,
    ∴这粒豆子落在黑色方格中的概率是=,
    故答案为.
    【点睛】
    此题考查了几何概率的求法,利用概率=相应的面积与总面积之比求出是解题关键.
    13、﹣.
    【解析】
    原式利用零指数幂、负整数指数幂法则计算即可求出值.
    【详解】
    原式=﹣1=﹣.
    故答案是:﹣.
    【点睛】
    考查了实数的运算,熟练掌握运算法则是解本题的关键.
    14、1
    【解析】
    根据这组数据的平均数是1和平均数的计算公式列式计算即可.
    【详解】
    ∵数据1,1,3,的平均数是1,
    ∴,
    解得:.
    故答案为:1.
    【点睛】
    本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
    15、(14+2)米
    【解析】
    过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.
    【详解】
    如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.
    ∵CD=8,CD与地面成30°角,
    ∴DE=CD=×8=4,
    根据勾股定理得:CE===4.
    ∵1m杆的影长为2m,
    ∴=,
    ∴EF=2DE=2×4=8,
    ∴BF=BC+CE+EF=20+4+8=(28+4).
    ∵=,
    ∴AB=(28+4)=14+2.
    故答案为(14+2).

    【点睛】
    本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.
    16、
    【解析】
    连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.
    【详解】
    解:连接CE,作EF⊥BC于F,

    由旋转变换的性质可知,∠CAE=60°,AC=AE,
    ∴△ACE是等边三角形,
    ∴CE=AC=4,∠ACE=60°,
    ∴∠ECF=30°,
    ∴EF=CE=2,
    由勾股定理得,CF= = ,
    ∴BF=BC-CF= ,
    由勾股定理得,BE== ,
    故答案为:.
    【点睛】
    本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.

    三、解答题(共8题,共72分)
    17、楼高AB为54.6米.
    【解析】
    过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.
    【详解】
    解:
    如图,过点C作CE⊥AB于E,

    则AE=CD=20,
    ∵CE====20,
    BE=CEtanα=20×tan45°=20×1=20,
    ∴AB=AE+EB=20+20≈20×2.732≈54.6(米),
    答:楼高AB为54.6米.
    【点睛】
    此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.
    18、1.8米
    【解析】
    设PA=PN=x,Rt△APM中求得=1.6x, 在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.
    【详解】
    在Rt△APN中,∠NAP=45°,
    ∴PA=PN,
    在Rt△APM中,,
    设PA=PN=x,
    ∵∠MAP=58°,
    ∴=1.6x,
    在Rt△BPM中,,
    ∵∠MBP=31°,AB=5,
    ∴,
    ∴ x=3,
    ∴MN=MP-NP=0.6x=1.8(米),
    答:广告牌的宽MN的长为1.8米.
    【点睛】
    熟练掌握三角函数的定义并能够灵活运用是解题的关键.
    19、(1)见解析;(2).
    【解析】
    对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
    对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
    【详解】
    解:(1)证明:∵,
    ∴.
    又∵为边上的中线,
    ∴.
    ∵,
    ∴,
    ∴.
    (2)∵,∴.
    在中,根据勾股定理,得.
    由(1)得,∴,
    即,
    ∴.
    【点睛】
    此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
    20、(1);(2)①;②△AOB与半圆D的公共部分的面积为;(3)tan∠AOB的值为或.
    【解析】
    (1)根据题意由勾股定理即可解答
    (2)①根据题意可知半圆D与数轴相切时,只有一个公共点,和当O、A、B三点在数轴上时,求出两种情况m的值即可
    ②如图,连接DC,得出△BCD为等边三角形,可求出扇形ADC的面积,即可解答
    (3)根据题意如图1,当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,列出方程求解即可解答
    【详解】
    (1)当半圆与数轴相切时,AB⊥OB,
    由勾股定理得m= ,
    故答案为 .
    (2)①∵半圆D与数轴相切时,只有一个公共点,此时m=,
    当O、A、B三点在数轴上时,m=7+4=11,
    ∴半圆D与数轴有两个公共点时,m的取值范围为.
    故答案为.
    ②如图,连接DC,当BC=2时,

    ∵BC=CD=BD=2,
    ∴△BCD为等边三角形,
    ∴∠BDC=60°,
    ∴∠ADC=120°,
    ∴扇形ADC的面积为 ,

    ∴△AOB与半圆D的公共部分的面积为 ;
    (3)如图1,

    当OB=AB时,内心、外心与顶点B在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4+x)2=42﹣x2,
    解得x= ,OH= ,AH= ,
    ∴tan∠AOB=,
    如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,

    设BH=x,则72﹣(4﹣x)2=42﹣x2,
    解得x= ,OH=,AH=,
    ∴tan∠AOB=.
    综合以上,可得tan∠AOB的值为或.
    【点睛】
    此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线
    21、(1)袋子中白球有2个;(2).
    【解析】
    试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
    试题解析:(1)设袋子中白球有x个,
    根据题意得:=,
    解得:x=2,
    经检验,x=2是原分式方程的解,
    ∴袋子中白球有2个;
    (2)画树状图得:

    ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
    ∴两次都摸到相同颜色的小球的概率为:.
    考点:列表法与树状图法;概率公式.
    22、(1);(2);(3)+.
    【解析】
    (1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;
    (2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;
    (3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.
    【详解】
    (1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,
    ∴BC=3,CE=,∠ACB=∠DCE=45°,
    ∴∠BCE=∠ACD,
    ∵==,=,
    ∴=,∠BCE=∠ACD,
    ∴△ACD∽△BCE,
    ∴=;
    (2)∵∠ACB=90°,∠B=30°,BC=4,
    ∴AC=,AB=2AC=,
    ∵∠QAP=∠QCP=90°,
    ∴点A,点Q,点C,点P四点共圆,
    ∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,
    ∴△ABC∽△PQC,
    ∴,
    ∴PQ=×QC=QC,
    ∴当QC的长度最小时,PQ的长度最小,
    即当QC⊥AB时,PQ的值最小,
    此时QC=2,PQ的最小值为;
    (3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,

    ∵∠ADC=90°,AD=CD,
    ∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,
    ∴△ABC∽△DEC,
    ∴,
    ∵∠DCE=∠ACB,
    ∴∠BCE=∠ACD,
    ∴△BCE∽△ACD,
    ∴∠BEC=∠ADC=90°,
    ∴CE=BC=2,
    ∵点F是EC中点,
    ∴DF=EF=CE=,
    ∴BF==,
    ∴BD≤DF+BF=+
    【点睛】
    本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.
    23、 (1);(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)画树状图展示所有6种等可能的结果数,再找出乙摸到白球的结果数,然后根据概率公式求解.
    【详解】
    解:(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是;
    故答案为:;
    (2)画树状图为:

    共有6种等可能的结果数,其中乙摸到白球的结果数为2,
    所以乙摸到白球的概率==.
    【点睛】
    本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    24、(1);(2)∠CDE=2∠A.
    【解析】
    (1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE的长;
    (2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.
    【详解】
    (1)∵AB是⊙O的直径,
    ∴∠ACB=90°,
    在Rt△ABC中,由勾股定理得:
    AB=
    =,
    ∴AO=AB=.
    ∵OD⊥AB,
    ∴∠AOE=∠ACB=90°,
    又∵∠A=∠A,
    ∴△AOE∽△ACB,
    ∴,
    ∴OE=
    =.
    (2)∠CDE=2∠A.理由如下:
    连结OC,
    ∵OA=OC,
    ∴∠1=∠A,
    ∵CD是⊙O的切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∴∠2+∠CDE=90°,
    ∵OD⊥AB,
    ∴∠2+∠3=90°,
    ∴∠3=∠CDE.
    ∵∠3=∠A+∠1=2∠A,
    ∴∠CDE=2∠A.

    考点:切线的性质;探究型;和差倍分.

    相关试卷

    2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年濉溪县重点达标名校中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了下列图形是轴对称图形的有等内容,欢迎下载使用。

    2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年济南历下区达标名校中考数学最后冲刺浓缩精华卷含解析,共16页。试卷主要包含了下列计算正确的是,下列命题中,真命题是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    2022年河南省新密市重点达标名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年河南省新密市重点达标名校中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了已知等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map