开学活动
搜索
    上传资料 赚现金

    2022届浙江省绍兴市新昌县十校联考最后数学试题含解析

    2022届浙江省绍兴市新昌县十校联考最后数学试题含解析第1页
    2022届浙江省绍兴市新昌县十校联考最后数学试题含解析第2页
    2022届浙江省绍兴市新昌县十校联考最后数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省绍兴市新昌县十校联考最后数学试题含解析

    展开

    这是一份2022届浙江省绍兴市新昌县十校联考最后数学试题含解析,共23页。试卷主要包含了如图,在中,边上的高是,4的平方根是,已知关于x的一元二次方程等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为(  )
    A.0.86×104 B.8.6×102 C.8.6×103 D.86×102
    2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
    A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
    3.一个几何体的俯视图如图所示,其中的数字表示该位置上小正方体的个数,那么这个几何体的主视图是(  )

    A. B. C. D.
    4.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    5.如图,在中,边上的高是( )

    A. B. C. D.
    6.如图,在平面直角坐标系中,线段AB的端点坐标为A(-2,4),B(4,2),直线y=kx-2与线段AB有交点,则K的值不可能是( )

    A.-5 B.-2 C.3 D.5
    7.在函数y=中,自变量x的取值范围是( )
    A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1
    8.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为(  )

    A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)
    9.4的平方根是(  )
    A.2 B.±2 C.8 D.±8
    10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是(  )
    A.1一定不是关于x的方程x2+bx+a=0的根
    B.0一定不是关于x的方程x2+bx+a=0的根
    C.1和﹣1都是关于x的方程x2+bx+a=0的根
    D.1和﹣1不都是关于x的方程x2+bx+a=0的根
    11.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
    A. B. C. D.
    12.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )

    A. B.π C.π D.π
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.

    14.如图,在△ABC中,DE∥BC,BF平分∠ABC,交DE的延长线于点F,若AD=1,BD=2,BC=4,则EF=________.

    15.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.

    16.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.
    17.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    18.如图,在△ABC中,DE∥BC,,则=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
    20.(6分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
    方案一:买一件甲种商品就赠送一件乙种商品;
    方案二:按购买金额打八折付款.
    某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
    (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
    (2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
    21.(6分)如图,在平行四边形中,的平分线与边相交于点.
    (1)求证;
    (2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.

    22.(8分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
    (1)求证:BC是⊙O的切线;
    (2)⊙O的半径为5,tanA=,求FD的长.

    23.(8分)如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.
    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?
    (3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    24.(10分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
    设在同一家复印店一次复印文件的页数为x(x为非负整数).
    (1)根据题意,填写下表:
    一次复印页数(页)
    5
    10
    20
    30

    甲复印店收费(元)
    0.5
       
    2
       

    乙复印店收费(元)
    0.6
       
    2.4
       

    (2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
    (3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
    25.(10分)先化简,再求值:﹣÷,其中a=1.
    26.(12分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
    27.(12分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
    求证:四边形ABCD是菱形;若AB=,BD=2,求OE的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.
    【详解】
    数据8 600用科学记数法表示为8.6×103
    故选C.
    【点睛】
    用科学记数法表示一个数的方法是
    (1)确定a:a是只有一位整数的数;
    (2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).
    2、C
    【解析】
    试题分析:28000=1.1×1.故选C.
    考点:科学记数法—表示较大的数.
    3、A
    【解析】
    一一对应即可.
    【详解】
    最左边有一个,中间有两个,最右边有三个,所以选A.
    【点睛】
    理解立体几何的概念是解题的关键.
    4、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    5、D
    【解析】
    根据三角形的高线的定义解答.
    【详解】
    根据高的定义,AF为△ABC中BC边上的高.
    故选D.
    【点睛】
    本题考查了三角形的高的定义,熟记概念是解题的关键.
    6、B
    【解析】
    当直线y=kx-2与线段AB的交点为A点时,把A(-2,4)代入y=kx-2,求出k=-3,根据一次函数的有关性质得到当k≤-3时直线y=kx-2与线段AB有交点;当直线y=kx-2与线段AB的交点为B点时,把B(4,2)代入y=kx-2,求出k=1,根据一次函数的有关性质得到当k≥1时直线y=kx-2与线段AB有交点,从而能得到正确选项.
    【详解】
    把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,
    ∴当直线y=kx-2与线段AB有交点,且过第二、四象限时,k满足的条件为k≤-3;
    把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,
    ∴当直线y=kx-2与线段AB有交点,且过第一、三象限时,k满足的条件为k≥1.
    即k≤-3或k≥1.
    所以直线y=kx-2与线段AB有交点,则k的值不可能是-2.
    故选B.
    【点睛】
    本题考查了一次函数y=kx+b(k≠0)的性质:当k>0时,图象必过第一、三象限,k越大直线越靠近y轴;当k<0时,图象必过第二、四象限,k越小直线越靠近y轴.
    7、C
    【解析】
    根据分式和二次根式有意义的条件进行计算即可.
    【详解】
    由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.
    故x的取值范围是x≥2且x≠2.
    故选C.
    【点睛】
    本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
    8、A
    【解析】
    分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).
    详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),
    ∴点O是AC的中点,
    ∵AB=CD,AD=BC,
    ∴四边形ABCD是平行四边形,
    ∴BD经过点O,
    ∵B的坐标为(﹣2,﹣2),
    ∴D的坐标为(2,2),
    故选A.
    点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    9、B
    【解析】
    依据平方根的定义求解即可.
    【详解】
    ∵(±1)1=4,
    ∴4的平方根是±1.
    故选B.
    【点睛】
    本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.
    10、D
    【解析】
    根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x2+bx+a=0的根;当b=-(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x的方程x2+bx+a=0的根.
    【详解】
    ∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,
    ∴,
    ∴b=a+1或b=-(a+1).
    当b=a+1时,有a-b+1=0,此时-1是方程x2+bx+a=0的根;
    当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.
    ∵a+1≠0,
    ∴a+1≠-(a+1),
    ∴1和-1不都是关于x的方程x2+bx+a=0的根.
    故选D.
    【点睛】
    本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
    11、B
    【解析】
    解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:

    ∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
    点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
    12、C
    【解析】
    过点作,
    ∵,

    ∴,,
    ∴为等腰直角三角形,,

    ∵为等边三角形,
    ∴,
    ∴.
    ∴.故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(7+6)
    【解析】
    过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.
    【详解】
    解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,

    ∵坝顶部宽为2m,坝高为6m,
    ∴DC=EF=2m,EC=DF=6m,
    ∵α=30°,
    ∴BE= (m),
    ∵背水坡的坡比为1.2:1,
    ∴,
    解得:AF=5(m),
    则AB=AF+EF+BE=5+2+6=(7+6)m,
    故答案为(7+6)m.
    【点睛】
    本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.
    14、
    【解析】
    由DE∥BC可得出△ADE∽△ABC,根据相似三角形的性质和平行线的性质解答即可.
    【详解】
    ∵DE∥BC,
    ∴∠F=∠FBC,
    ∵BF平分∠ABC,
    ∴∠DBF=∠FBC,
    ∴∠F=∠DBF,
    ∴DB=DF,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴ ,即 ,
    解得:DE= ,
    ∵DF=DB=2,
    ∴EF=DF-DE=2- = ,
    故答案为.
    【点睛】
    此题考查相似三角形的判定和性质,关键是由DE∥BC可得出△ADE∽△ABC.
    15、(-1,2)
    【解析】
    因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可.
    【详解】
    因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,
    若直线向上平移与抛物线相切,切点即为P点,
    设平移后的直线为y=-x-2+b,
    ∵直线y=-x-2+b与抛物线y=x2+x+2相切,
    ∴x2+x+2=-x-2+b,即x2+2x+4-b=0,
    则△=4-4(4-b)=0,
    ∴b=3,
    ∴平移后的直线为y=-x+1,
    解得x=-1,y=2,
    ∴P点坐标为(-1,2),
    故答案为(-1,2).
    【点睛】
    本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键.
    16、答案不唯一
    【解析】
    分析:把y改写成顶点式,进而解答即可.
    详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
    故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
    点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为
    y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.
    17、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
    18、
    【解析】
    先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.
    【详解】
    解:∵DE∥BC,,
    ∴,
    由平行条件易证△ADE△ABC,
    ∴S△ADE:S△ABC=1:9,
    ∴=.
    【点睛】
    本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1
    【解析】
    先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
    【详解】
    解:a3b+2a2b2+ab3
    =ab(a2+2ab+b2)
    =ab(a+b)2,
    将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
    故代数式a3b+2a2b2+ab3的值是1.
    20、(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.
    【解析】
    (1)根据方案即可列出函数关系式;
    (2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.
    解:(1) 得:;
    得:;
    (2)
    ,
    因为w是m的一次函数,k=-4

    相关试卷

    浙江省义乌市2021-2022学年十校联考最后数学试题含解析:

    这是一份浙江省义乌市2021-2022学年十校联考最后数学试题含解析,共20页。试卷主要包含了若a+|a|=0,则等于,下列4个数,如图,,则的度数为等内容,欢迎下载使用。

    浙江省杭州市春蕾中学2022年十校联考最后数学试题含解析:

    这是一份浙江省杭州市春蕾中学2022年十校联考最后数学试题含解析,共23页。试卷主要包含了的平方根是,下列运算正确的是等内容,欢迎下载使用。

    浙江省乐清育英校2022年十校联考最后数学试题含解析:

    这是一份浙江省乐清育英校2022年十校联考最后数学试题含解析,共18页。试卷主要包含了下列计算正确的是,下列事件是确定事件的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map