终身会员
搜索
    上传资料 赚现金
    2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析
    立即下载
    加入资料篮
    2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析01
    2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析02
    2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析

    展开
    这是一份2022届浙江省金华市兰溪市重点中学中考数学模拟试题含解析,共19页。试卷主要包含了下列运算正确的是,如图,一段抛物线,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形ODBC的面积为3,则k的值为( )

    A.1 B.2 C.3 D.6
    2.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为(  )

    A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
    3.函数y=的自变量x的取值范围是( )
    A.x≠2 B.x<2 C.x≥2 D.x>2
    4.这个数是( )
    A.整数 B.分数 C.有理数 D.无理数
    5.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
    6.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(   )

    A.4 B.﹣4 C.﹣6 D.6
    7.某中学篮球队12名队员的年龄如下表:
    年龄:(岁)
    13
    14
    15
    16
    人数
    1
    5
    4
    2
    关于这12名队员的年龄,下列说法错误的是( )
    A.众数是14岁 B.极差是3岁 C.中位数是14.5岁 D.平均数是14.8岁
    8.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是(  )
    A.16 B.17 C.18 D.19
    9.下列计算正确的是(  )
    A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
    10.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )

    A. B.π C. D.3
    二、填空题(共7小题,每小题3分,满分21分)
    11.抛物线 的顶点坐标是________.
    12.化简;÷(﹣1)=______.
    13.如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为_____.

    14.化简:=_____.
    15.如果,那么______.
    16.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).

    17.若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是( )
    A.﹣1 B.0 C.1 D.2
    三、解答题(共7小题,满分69分)
    18.(10分)已知:如图.D是的边上一点,,交于点M,.
    (1)求证:;
    (2)若,试判断四边形的形状,并说明理由.

    19.(5分)如图,在△ABC中,D为BC边上一点,AC=DC,E为AB边的中点,
    (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);
    (2)连接EF,若BD=4,求EF的长.

    20.(8分)如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.
    (1)求抛物线的表达式;
    (2)如图,当CP//AO时,求∠PAC的正切值;

    (3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.
    21.(10分)计算:2sin30°﹣|1﹣|+()﹣1
    22.(10分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?

    23.(12分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
    图1 各项报名人数扇形统计图:

    图2 各项报名人数条形统计图:

    根据以上信息解答下列问题:
    (1)学生报名总人数为 人;
    (2)如图1项目D所在扇形的圆心角等于 ;
    (3)请将图2的条形统计图补充完整;
    (4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
    24.(14分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
    售价x/(元/千克)
    50
    60
    70
    销售量y/千克
    100
    80
    60
    (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.
    【详解】

    解:如图:连接OE,设此反比例函数的解析式为y=(k>0),C(c,0),
    则B(c,b),E(c, ),
    设D(x,y),
    ∵D和E都在反比例函数图象上,
    ∴xy=k,
    即 ,
    ∵四边形ODBC的面积为3,


    ∴bc=4

    ∵k>0
    ∴ 解得k=2,
    故答案为:B.
    【点睛】
    本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.
    2、B
    【解析】
    【分析】由已知可证△ABO∽CDO,故 ,即.
    【详解】由已知可得,△ABO∽CDO,
    所以, ,
    所以,,
    所以,AB=5.4
    故选B
    【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
    3、D
    【解析】
    根据被开放式的非负性和分母不等于零列出不等式即可解题.
    【详解】
    解:∵函数y=有意义,
    ∴x-20,
    即x>2
    故选D
    【点睛】
    本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.
    4、D
    【解析】
    由于圆周率π是一个无限不循环的小数,由此即可求解.
    【详解】
    解:实数π是一个无限不循环的小数.所以是无理数.
    故选D.
    【点睛】
    本题主要考查无理数的概念,π是常见的一种无理数的形式,比较简单.
    5、B
    【解析】
    根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
    【详解】
    解:A、5ab﹣=4ab,此选项运算错误,
    B、a6÷a2=a4,此选项运算正确,
    C、,选项运算错误,
    D、(a2b)3=a6b3,此选项运算错误,
    故选B.
    【点睛】
    此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
    6、C
    【解析】
    分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
    详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
    ∴OA1=5,
    ∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
    ∴A1A2=A2A3=…=OA1=5,
    ∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
    当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
    即m=﹣1.
    故选C.
    点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
    7、D
    【解析】
    分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.
    解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;
    极差是:16﹣13=3,故选项B正确,不合题意;
    中位数是:14.5,故选项C正确,不合题意;
    平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.
    故选D.
    “点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.
    8、A
    【解析】
    一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.
    故选A.
    【点睛】
    此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.
    9、D
    【解析】
    各项中每项计算得到结果,即可作出判断.
    【详解】
    解:A.原式=8,错误;
    B.原式=2+4,错误;
    C.原式=1,错误;
    D.原式=x6y﹣3= ,正确.
    故选D.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    10、B
    【解析】
    ∵四边形AECD是平行四边形,
    ∴AE=CD,
    ∵AB=BE=CD=3,
    ∴AB=BE=AE,
    ∴△ABE是等边三角形,
    ∴∠B=60°,
    ∴的弧长=.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(0,-1)
    【解析】
    ∵a=2,b=0,c=-1,∴-=0, ,
    ∴抛物线的顶点坐标是(0,-1),
    故答案为(0,-1).
    12、-
    【解析】
    直接利用分式的混合运算法则即可得出.
    【详解】
    原式,


    .
    故答案为.
    【点睛】
    此题主要考查了分式的化简,正确掌握运算法则是解题关键.
    13、.
    【解析】
    由点A(1,1),可得OA的长,点A在第一象限的角平分线上,可得∠AOB=45°,,再根据弧长公式计算即可.
    【详解】
    ∵A(1,1),
    ∴OA=,点A在第一象限的角平分线上,
    ∵以点O为旋转中心,将点A逆时针旋转到点B的位置,
    ∴∠AOB=45°,
    ∴的长为=,
    故答案为:.
    【点睛】
    本题考查坐标与图形变化——旋转,弧长公式,熟练掌握旋转的性质以及弧长公式是解题的关键.本题中求出OA=以及∠AOB=45°也是解题的关键.
    14、-6
    【解析】
    根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:
    【详解】
    ,
    故答案为-6
    15、;
    【解析】
    先对等式进行转换,再求解.
    【详解】

    ∴3x=5x-5y
    ∴2x=5y

    【点睛】
    本题考查的是分式,熟练掌握分式是解题的关键.
    16、6
    【解析】
    试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
    解:过S作SC⊥AB于C.

    ∵∠SBC=60°,∠A=30°,
    ∴∠BSA=∠SBC﹣∠A=30°,
    即∠BSA=∠A=30°.
    ∴SB=AB=1.
    Rt△BCS中,BS=1,∠SBC=60°,
    ∴SC=SB•sin60°=1×=6(海里).
    即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
    故答案为:6.
    17、D
    【解析】
    根据根的判别式得到关于a的方程,求解后可得到答案.
    【详解】
    关于x的方程有两个不相等的实数根,

    解得:
    满足条件的最小整数的值为2.
    故选D.
    【点睛】
    本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
    【解析】
    (1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
    (2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
    【详解】
    证明:(1)∵CN∥AB,
    ∴∠DAM=∠NCM,
    ∵在△AMD和△CMN中,
    ∠DAM=∠NCM
    MA=MC
    ∠DMA=∠NMC,
    ∴△AMD≌△CMN(ASA),
    ∴AD=CN,
    又∵AD∥CN,
    ∴四边形ADCN是平行四边形,
    ∴CD=AN;
    (2)解:四边形ADCN是矩形,
    理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
    ∴∠MCD=∠MDC,
    ∴MD=MC,
    由(1)知四边形ADCN是平行四边形,
    ∴MD=MN=MA=MC,
    ∴AC=DN,
    ∴四边形ADCN是矩形.
    【点睛】
    本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
    19、 (1)见解析;(1)1
    【解析】
    (1)根据角平分线的作图可得;
    (1)由等腰三角形的三线合一,结合E为AB边的中点证EF为△ABD的中位线可得.
    【详解】
    (1)如图,射线CF即为所求;

    (1)∵∠CAD=∠CDA,
    ∴AC=DC,即△CAD为等腰三角形;
    又CF是顶角∠ACD的平分线,
    ∴CF是底边AD的中线,即F为AD的中点,
    ∵E是AB的中点,
    ∴EF为△ABD的中位线,
    ∴EF=BD=1.
    【点睛】
    本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键.
    20、(1)抛物线的表达式为;(2);(3)P点的坐标是.
    【解析】
    分析:
    (1)由题意易得点A、C的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线列出方程组,解得b、c的值即可求得抛物线的解析式;
    (2)如下图,作PH⊥AC于H,连接OP,由已知条件先求得PC=2,AC=,结合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,结合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,这样在Rt△APH中由tan∠PAC=即可求得所求答案了;
    (3)如图,当四边形AOPQ为符合要求的平行四边形时,则此时PQ=AO=1,且点P、Q关于抛物线的对称轴x=-1对称,由此可得点P的横坐标为-3,代入抛物线解析即可求得此时的点P的坐标.
    详解:
    (1)∵直线y=x+1经过点A、C,点A在x轴上,点C在y轴上
    ∴A点坐标是(﹣1,0),点C坐标是(0,1),
    又∵抛物线过A,C两点,

    解得,
    ∴抛物线的表达式为;
    (2)作PH⊥AC于H,
    ∵点C、P在抛物线上,CP//AO, C(0,1),A(-1,0)
    ∴P(-2,1),AC=,
    ∴PC=2,,
    ∴PH=,
    ∵A(﹣1,0),C(0,1),
    ∴∠CAO=15°.
    ∵CP//AO,
    ∴∠ACP=∠CAO=15°,
    ∵PH⊥AC,
    ∴CH=PH=,
    ∴.
    ∴;

    (3)∵,
    ∴抛物线的对称轴为直线,
    ∵以AP,AO为邻边的平行四边形的第四个顶点Q恰好也在抛物线上,
    ∴PQ∥AO,且PQ=AO=1.
    ∵P,Q都在抛物线上,
    ∴P,Q关于直线对称,
    ∴P点的横坐标是﹣3,
    ∵当x=﹣3时,,
    ∴P点的坐标是.

    点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt△APH,并结合题中的已知条件求出PH和AH的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ∥AO,PQ=AO及P、Q关于抛物线的对称轴对称得到点P的横坐标.
    【详解】
    请在此输入详解!
    21、4﹣
    【解析】
    原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.
    【详解】
    原式=2×﹣( ﹣1)+2
    =1﹣+1+2
    =4﹣.
    【点睛】
    本题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    22、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
    【解析】
    (1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
    【详解】
    (1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:

    解得:k=,b=﹣,
    即y1=x﹣,
    二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:

    解得:k′=,b′=,
    即y2=x+
    联立方程组,
    解得:,
    所以发令后第37秒两班运动员在275米处第一次并列.
    【点睛】
    本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.
    23、(1)200;(2)54°;(3)见解析;(4)
    【解析】
    (1)根据A的人数及所占的百分比即可求出总人数;
    (2)用D的人数除以总人数再乘360°即可得出答案;
    (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
    (4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
    【详解】
    解:(1)学生报名总人数为(人),
    故答案为:200;
    (2)项目所在扇形的圆心角等于,
    故答案为:54°;
    (3)项目的人数为,
    补全图形如下:

    (4)画树状图得:

    所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
    恰好选中甲、乙两名同学的概率为.
    【点睛】
    本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
    24、 (1)y=-2x+200 (2)W=-2x2+280x-8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.
    【解析】
    (1)用待定系数法求一次函数的表达式;
    (2)利用利润的定义,求与之间的函数表达式;
    (3)利用二次函数的性质求极值.
    【详解】
    解:(1)设,由题意,得,解得,∴所求函数表达式为.
    (2).
    (3),其中,∵,
    ∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.
    考点: 二次函数的实际应用.

    相关试卷

    2023年浙江省金华市婺城区中考数学模拟试卷(一)(含解析): 这是一份2023年浙江省金华市婺城区中考数学模拟试卷(一)(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年浙江省金华市兰溪市中考数学调研试卷(4月份)(含解析): 这是一份2023年浙江省金华市兰溪市中考数学调研试卷(4月份)(含解析),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年浙江省金华市婺城区中考数学模拟试卷(二)(含解析): 这是一份2023年浙江省金华市婺城区中考数学模拟试卷(二)(含解析),共25页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map