终身会员
搜索
    上传资料 赚现金

    2022届浙江省温州市第八中学中考数学模拟试题含解析

    立即下载
    加入资料篮
    2022届浙江省温州市第八中学中考数学模拟试题含解析第1页
    2022届浙江省温州市第八中学中考数学模拟试题含解析第2页
    2022届浙江省温州市第八中学中考数学模拟试题含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省温州市第八中学中考数学模拟试题含解析

    展开

    这是一份2022届浙江省温州市第八中学中考数学模拟试题含解析,共27页。试卷主要包含了对于一组统计数据,下列运算正确的是等内容,欢迎下载使用。
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为( )
    A.B.
    C.D.
    2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
    A.众数B.方差C.平均数D.中位数
    3.下列四个图形中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    4.某班 30名学生的身高情况如下表:
    则这 30 名学生身高的众数和中位数分别是
    A.,B.,
    C.,D.,
    5.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
    确的是( )
    A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1
    6.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
    A.平均数是3B.中位数是3C.众数是3D.方差是2.5
    7.下列运算正确的是( )
    A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
    8.如图,在正方形ABCD中,AB=,P为对角线AC上的动点,PQ⊥AC交折线A﹣D﹣C于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是( )
    A.B.
    C.D.
    9.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
    A.9B.7C.﹣9D.﹣7
    10.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )
    A.B.C.D.
    11.已知关于x的二次函数y=x2﹣2x﹣2,当a≤x≤a+2时,函数有最大值1,则a的值为( )
    A.﹣1或1B.1或﹣3C.﹣1或3D.3或﹣3
    12.将直线y=﹣x+a的图象向右平移2个单位后经过点A(3,3),则a的值为( )
    A.4 B.﹣4 C.2 D.﹣2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.
    14.如图,若∠1+∠2=180°,∠3=110°,则∠4= .
    15.已知边长为5的菱形中,对角线长为6,点在对角线上且,则的长为__________.
    16.如图,正方形ABCD的边长为,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB, 垂足为点F,则EF的长是__________.
    17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.
    18.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.
    20.(6分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
    (1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
    (2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
    21.(6分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    22.(8分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.
    当的半径为1时.
    在点、、中,的“特征点”是______;
    点P在直线上,若点P为的“特征点”求b的取值范围;
    的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.
    23.(8分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是 ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.
    24.(10分)问题提出
    (1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,∠ADC=60°,则四边形 ABCD 的面积为 _;
    问题探究
    (2).如图 2,在四边形 ABCD 中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得△BEF 的周长最小,作出图像即可.
    25.(10分)(1)计算:()﹣3×[﹣()3]﹣4cs30°+;
    (2)解方程:x(x﹣4)=2x﹣8
    26.(12分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
    (1)求甲、乙两队合作完成这项工程需要多少天?
    (2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
    27.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
    (1)问题发现
    ①当θ=0°时,= ;
    ②当θ=180°时,= .
    (2)拓展探究
    试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
    (3)问题解决
    ①在旋转过程中,BE的最大值为 ;
    ②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据k>0,k<0,结合两个函数的图象及其性质分类讨论.
    【详解】
    分两种情况讨论:
    ①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;
    ②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.
    分析可得:它们在同一直角坐标系中的图象大致是D.
    故选D.
    【点睛】
    本题主要考查二次函数、反比例函数的图象特点.
    2、D
    【解析】
    根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】
    由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.
    故本题选:D.
    【点睛】
    本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.
    3、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、不是轴对称图形,是中心对称图形,故此选项不合题意;
    B、是轴对称图形,不是中心对称图形,故此选项不合题意;
    C、不是轴对称图形,不是中心对称图形,故此选项不合题意;
    D、是轴对称图形,是中心对称图形,故此选项符合题意;
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    4、A
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.
    【详解】
    解:这组数据中,出现的次数最多,故众数为,
    共有30人,
    第15和16人身高的平均数为中位数,
    即中位数为:,
    故选:A.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大或从大到小的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    5、B
    【解析】
    根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
    【详解】
    解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
    ∴x1=﹣ ,x1= ,x3= ,
    ∵a<1,
    ∴a﹣1<0,
    ∴x1>x3>x1.
    故选B.
    【点睛】
    此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
    6、D
    【解析】
    根据平均数、中位数、众数和方差的定义逐一求解可得.
    【详解】
    解:A、平均数为=3,正确;
    B、重新排列为1、2、3、3、6,则中位数为3,正确;
    C、众数为3,正确;
    D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
    故选:D.
    【点睛】
    本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    7、B
    【解析】
    A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
    B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
    C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
    D选项:两项不是同类项,故不能进行合并.
    【详解】
    A选项:a6÷a2=a4,故本选项错误;
    B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
    C选项:(-a)2•a3=a5,故本选项错误;
    D选项:5a与2b不是同类项,不能合并,故本选项错误;
    故选:B.
    【点睛】
    考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
    8、B
    【解析】
    ∵在正方形ABCD中, AB=,
    ∴AC=4,AD=DC=,∠DAP=∠DCA=45,
    当点Q在AD上时,PA=PQ,
    ∴DP=AP=x,
    ∴S= ;
    当点Q在DC上时,PC=PQ
    CP=4-x,
    ∴S=;
    所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,
    故选B.
    【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况.
    9、C
    【解析】
    先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.
    【详解】
    ∵当x=7时,y=6-7=-1,
    ∴当x=4时,y=2×4+b=-1,
    解得:b=-9,
    故选C.
    【点睛】
    本题主要考查函数值,解题的关键是掌握函数值的计算方法.
    10、B
    【解析】
    由题意可知,
    当时,;
    当时,

    当时,.∵时,;时,.∴结合函数解析式,
    可知选项B正确.
    【点睛】
    考点:1.动点问题的函数图象;2.三角形的面积.
    11、A
    【解析】
    分析:
    详解:∵当a≤x≤a+2时,函数有最大值1,∴1=x2-2x-2,解得: ,
    即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.
    点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.
    12、A
    【解析】
    直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.
    【详解】
    由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,
    把A(3,3)代入,得
    3=-3+b+2,
    解得b=4.
    故选A.
    【点睛】
    本题考查了一次函数图象的平移,一次函数图象的平移规律是:①y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;②y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、或或1
    【解析】
    如图所示:
    ①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边PE=AE=;
    ②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底边AP===;
    ③当PA=PE时,底边AE=1;
    综上所述:等腰三角形AEP的对边长为或或1;
    故答案为或或1.
    14、110°.
    【解析】
    解:∵∠1+∠2=180°,
    ∴a∥b,∴∠3=∠4,
    又∵∠3=110°,∴∠4=110°.
    故答案为110°.
    15、3或1
    【解析】
    菱形ABCD中,边长为1,对角线AC长为6,由菱形的性质及勾股定理可得AC⊥BD,BO=4,分当点E在对角线交点左侧时(如图1)和当点E在对角线交点左侧时(如图2)两种情况求BE得长即可.
    【详解】
    解:当点E在对角线交点左侧时,如图1所示:
    ∵菱形ABCD中,边长为1,对角线AC长为6,
    ∴AC⊥BD,BO= =4,
    ∵tan∠EAC=,
    解得:OE=1,
    ∴BE=BO﹣OE=4﹣1=3,
    当点E在对角线交点左侧时,如图2所示:
    ∵菱形ABCD中,边长为1,对角线AC长为6,
    ∴AC⊥BD,BO==4,
    ∵tan∠EAC=,
    解得:OE=1,
    ∴BE=BO﹣OE=4+1=1,
    故答案为3或1.
    【点睛】
    本题主要考查了菱形的性质,解决问题时要注意分当点E在对角线交点左侧时和当点E在对角线交点左侧时两种情况求BE得长.
    16、2
    【解析】
    设EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.
    【详解】
    设EF=x,
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,
    ∴BD=AB=4+4,EF=BF=x,
    ∴BE=x,
    ∵∠BAE=22.5°,
    ∴∠DAE=90°-22.5°=67.5°,
    ∴∠AED=180°-45°-67.5°=67.5°,
    ∴∠AED=∠DAE,
    ∴AD=ED,
    ∴BD=BE+ED=x+4+2=4+4,
    解得:x=2,
    即EF=2.
    17、=
    【解析】
    设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.
    【详解】
    解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,
    由题意得:=.
    故答案是:=.
    【点睛】
    本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.
    18、7
    【解析】
    首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.
    【详解】
    根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,
    ∴,
    ∴最多是7个,
    故答案为:7.
    【点睛】
    本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2)BD=9.6.
    【解析】
    试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD, ,再由圆周角定理可得 ,从而得到∠ OBE+∠ DBC=90°,即 ,命题得证.
    (2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.
    试题解析:(1)证明:如下图所示,连接OB.
    ∵ E是弦BD的中点,∴ BE=DE,OE⊥ BD,,
    ∴∠ BOE=∠ A,∠ OBE+∠ BOE=90°.
    ∵∠ DBC=∠ A,∴∠ BOE=∠ DBC,
    ∴∠ OBE+∠ DBC=90°,∴∠ OBC=90°,即BC⊥OB,∴ BC是⊙ O的切线.
    (2)解:∵ OB=6,BC=8,BC⊥OB,∴ ,
    ∵ ,∴ ,
    ∴.
    点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.
    20、 (1) 1;(1) ≤m<.
    【解析】
    (1)在Rt△ABP中利用勾股定理即可解决问题;
    (1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    【详解】
    解:(1):(1)如图1中,设PD=t.则PA=5-t.
    ∵P、B、E共线,
    ∴∠BPC=∠DPC,
    ∵AD∥BC,
    ∴∠DPC=∠PCB,
    ∴∠BPC=∠PCB,
    ∴BP=BC=5,
    在Rt△ABP中,∵AB1+AP1=PB1,
    ∴31+(5-t)1=51,
    ∴t=1或9(舍弃),
    ∴t=1时,B、E、P共线.
    (1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
    作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3
    易证四边形EMCQ是矩形,
    ∴CM=EQ=1,∠M=90°,
    ∴EM=,
    ∵∠DAC=∠EDM,∠ADC=∠M,
    ∴△ADC∽△DME,


    ∴AD=,
    如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
    作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3
    在Rt△ECQ中,QC=DM=,
    由△DME∽△CDA,

    ∴,
    ∴AD=,
    综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
    【点睛】
    本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.
    21、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    22、(1)①、;②(2)或,.
    【解析】
    据若,则点P为的“特征点”,可得答案;
    根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;
    根据垂线段最短,可得PC最短,根据等腰直角三角形的性质,可得,根据若,则点P为的“特征点”,可得答案.
    【详解】
    解:,,
    点是的“特征点”;
    ,,
    点是的“特征点”;
    ,,
    点不是的“特征点”;
    故答案为、
    如图1,
    在上,若存在的“特征点”点P,点O到直线的距离.
    直线交y轴于点E,过O作直线于点H.
    因为.
    在中,可知.
    可得同理可得.
    的取值范围是:
    如图2

    设C点坐标为,
    直线,.
    ,,
    ,.


    线段MN上的所有点都不是的“特征点”,

    即,
    解得或,
    点C的横坐标的取值范围是或,.
    故答案为 :(1)①、;②(2)或,.
    【点睛】
    本题考查一次函数综合题,解的关键是利用若,则点P为的“特征点”;解的关键是利用等腰直角三角形的性质得出OE的长;解的关键是利用等腰直角三角形的性质得出,又利用了.
    23、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.
    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
    24、(1)3 ,(2)见解析
    【解析】
    (1)易证△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△AEF即为所求.
    【详解】
    (1)∵AB=BC,AD=CD=3, ∠BAD=∠BCD=90°,
    ∴△ABD≌△CBD(HL)
    ∴∠ADB=∠CDB=∠ADC=30°,
    ∴AB=
    ∴S△ABD==
    ∴四边形ABCD的面积为2S△ABD=
    (2)作点B关于AD的对称点B’,点B关于CD的对应点B’’,连接B’B’’,与AD、CD交于EF,△BEF的周长为BE+EF+BF=B’E+EF+B’’F=B’B’’为最短.
    故此时△BEF的周长最小.
    【点睛】
    此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.
    25、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
    26、(1)甲、乙两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天
    【解析】
    (1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;
    (2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案.
    【详解】
    (1)设甲、乙两队合作完成这项工程需要x天
    根据题意得,,
    解得 x=36,
    经检验x=36是分式方程的解,
    答:甲、乙两队合作完成这项工程需要36天,
    (2)
    设甲、乙需要合作y天,根据题意得,

    解得y≤7
    答:甲、乙两队至多要合作7天.
    【点睛】
    本题考查了分式方程的应用和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.
    27、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
    【解析】
    (1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
    【详解】
    解:(1)①当θ=0°时,
    在Rt△ABC中,AC=BC=2,
    ∴∠A=∠B=45°,AB=2,
    ∵AD=DE=AB=,
    ∴∠AED=∠A=45°,
    ∴∠ADE=90°,
    ∴DE∥CB,
    ∴,
    ∴,
    ∴,
    故答案为,
    ②当θ=180°时,如图1,
    ∵DE∥BC,
    ∴,
    ∴,
    即:,
    ∴,
    故答案为;
    (2)当0°≤θ<360°时,的大小没有变化,
    理由:∵∠CAB=∠DAE,
    ∴∠CAD=∠BAE,
    ∵,
    ∴△ADC∽△AEB,
    ∴;
    (3)①当点E在BA的延长线时,BE最大,
    在Rt△ADE中,AE=AD=2,
    ∴BE最大=AB+AE=2+2;
    ②如图2,
    当点E在BD上时,
    ∵∠ADE=90°,
    ∴∠ADB=90°,
    在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
    ∴BE=BD+DE=+,
    由(2)知,,
    ∴CD=+1,
    如图3,

    当点D在BE的延长线上时,
    在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
    ∴BE=BD﹣DE=﹣,
    由(2)知,,
    ∴CD=﹣1.
    故答案为 +1或﹣1.
    【点睛】
    此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
    身高
    人数
    1
    3
    4
    7
    8
    7

    相关试卷

    2024年浙江省温州市瓯海区中考数学模拟试卷(含解析):

    这是一份2024年浙江省温州市瓯海区中考数学模拟试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023届浙江省温州市各校中考数学模拟精编试卷含解析:

    这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。

    2023年浙江省温州市中考数学模拟试卷(含解析):

    这是一份2023年浙江省温州市中考数学模拟试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map