终身会员
搜索
    上传资料 赚现金
    2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析01
    2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析02
    2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析

    展开
    这是一份2022届浙江省嘉兴市嘉善县市级名校中考数学最后一模试卷含解析,共22页。试卷主要包含了的值是,下列实数中,无理数是等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
    ①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
    A.2个B.3个C.4个D.5个
    2.有下列四种说法:
    ①半径确定了,圆就确定了;②直径是弦;
    ③弦是直径;④半圆是弧,但弧不一定是半圆.
    其中,错误的说法有( )
    A.1种B.2种C.3种D.4种
    3.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设Pn(xn,yn),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为( )
    A.1B.3C.﹣1D.2019
    4.下列四个多项式,能因式分解的是( )
    A.a-1B.a2+1
    C.x2-4yD.x2-6x+9
    5.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是( )
    A.﹣a<a<a2B.a<﹣a<a2C.﹣a<a2<aD.a<a2<﹣a
    6.的值是( )
    A.1B.﹣1C.3D.﹣3
    7.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )
    A.B.C.D.
    8.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )
    A.70°B.110°C.130°D.140°
    9.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )
    A.32°B.64°C.77°D.87°
    10.下列实数中,无理数是( )
    A.3.14B.1.01001C.D.
    11. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )
    A.2B.C.5D.
    12.不等式组的解集为.则的取值范围为( )
    A.B.C.D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
    14.计算:﹣|﹣2|+()﹣1=_____.
    15.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.
    16.若分式方程有增根,则m的值为______.
    17.因式分解:2b2a2﹣a3b﹣ab3=_____.
    18.在数轴上与所对应的点相距4个单位长度的点表示的数是______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.
    (1)求抛物线的解析式及点D的坐标;
    (2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;
    (3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.
    20.(6分)先化简,再求值:,其中x=﹣1.
    21.(6分)计算:2-1+20160-3tan30°+|-|
    22.(8分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.
    (1)求证:直线CD是⊙O的切线;
    (2)若DE=2BC,AD=5,求OC的值.
    23.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
    请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 .的面积为 .
    24.(10分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)
    25.(10分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
    (1)求双曲线解析式;
    (2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.
    26.(12分)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.
    (1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD= BD.
    (2)探究证明
    将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明
    (3)拓展延伸
    在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.
    27.(12分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.
    (1)求证:AM2=MF.MH
    (2)若BC2=BD.DM,求证:∠AMB=∠ADC.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据图形给出的信息求出两车的出发时间,速度等即可解答.
    【详解】
    解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
    ②慢车0时出发,快车2时出发,故正确.
    ③快车4个小时走了276km,可求出速度为69km/h,错误.
    ④慢车6个小时走了276km,可求出速度为46km/h,正确.
    ⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
    ⑥快车2时出发,14时到达,用了12小时,错误.
    故答案选B.
    【点睛】
    本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
    2、B
    【解析】
    根据弦的定义、弧的定义、以及确定圆的条件即可解决.
    【详解】
    解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
    直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
    弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
    ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
    其中错误说法的是①③两个.
    故选B.
    【点睛】
    本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
    3、C
    【解析】
    根据各点横坐标数据得出规律,进而得出x +x +…+x ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.
    【详解】
    解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;
    ∴x1+x2+…+x7=﹣1
    ∵x1+x2+x3+x4=1﹣1﹣1+3=2;
    x5+x6+x7+x8=3﹣3﹣3+5=2;

    x97+x98+x99+x100=2…
    ∴x1+x2+…+x2016=2×(2016÷4)=1.
    而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,
    ∴x2017+x2018+x2019=﹣1009,
    ∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,
    故选C.
    【点睛】
    此题主要考查规律型:点的坐标,解题关键在于找到其规律
    4、D
    【解析】
    试题分析:利用平方差公式及完全平方公式的结构特征判断即可.
    试题解析:x2-6x+9=(x-3)2.
    故选D.
    考点:2.因式分解-运用公式法;2.因式分解-提公因式法.
    5、D
    【解析】
    根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.
    【详解】
    由数轴上的位置可得,a<0,-a>0, 0所以,a<a2<﹣a.
    故选D
    【点睛】
    本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置.
    6、B
    【解析】
    直接利用立方根的定义化简得出答案.
    【详解】
    因为(-1)3=-1,
    =﹣1.
    故选:B.
    【点睛】
    此题主要考查了立方根,正确把握立方根的定义是解题关键.,
    7、D
    【解析】
    过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
    【详解】
    过O作直线OE⊥AB,交CD于F,
    ∵AB//CD,
    ∴OF⊥CD,OE=12,OF=2,
    ∴△OAB∽△OCD,
    ∵OE、OF分别是△OAB和△OCD的高,
    ∴,即,
    解得:CD=1.
    故选D.
    【点睛】
    本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.
    8、D
    【解析】
    ∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
    =360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
    9、C
    【解析】
    试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.
    考点:旋转的性质.
    10、C
    【解析】
    先把能化简的数化简,然后根据无理数的定义逐一判断即可得.
    【详解】
    A、3.14是有理数;
    B、1.01001是有理数;
    C、是无理数;
    D、是分数,为有理数;
    故选C.
    【点睛】
    本题主要考查无理数的定义,属于简单题.
    11、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    12、B
    【解析】
    求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
    【详解】
    解:解不等式组,得.
    ∵不等式组的解集为x<2,
    ∴k+1≥2,
    解得k≥1.
    故选:B.
    【点睛】
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
    ∴DG=DC﹣CG=1,则AG==,
    ∵ ,∠ABG=∠CBE,
    ∴△ABG∽△CBE,
    ∴,
    解得,CE=,
    故答案为.
    【点睛】
    本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
    14、﹣1
    【解析】
    根据立方根、绝对值及负整数指数幂等知识点解答即可.
    【详解】
    原式= -2 -2+3= -1
    【点睛】
    本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
    15、
    【解析】
    ∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,
    ∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,
    ∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,
    在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
    ∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),
    ∵mn=﹣2,∴n(﹣m)=2,
    ∴点B所在图象的函数表达式为,
    故答案为:.
    16、-1
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘(x-1),得
    x-1(x-1)=-m
    ∵原方程增根为x=1,
    ∴把x=1代入整式方程,得m=-1,
    故答案为:-1.
    【点睛】
    本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.
    17、﹣ab(a﹣b)2
    【解析】
    首先确定公因式为ab,然后提取公因式整理即可.
    【详解】
    2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案为﹣ab(a﹣b)2.
    【点睛】
    本题考查了因式分解-提公因式法,解题的关键是掌握提公因式法的概念.
    18、2或﹣1
    【解析】
    解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.
    点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1) ,点D的坐标为(2,-8) (2) 点F的坐标为(7,)或(5,)(3) 菱形对角线MN的长为或.
    【解析】
    分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB, tan∠FAG=tan∠BDE,求出F点坐标.(3)分类讨论,当MN在x轴上方时,在x轴下方时分别计算MN.
    详解:
    (1)∵OB=OC=1,
    ∴B(1,0),C(0,-1).
    ∴,
    解得,
    ∴抛物线的解析式为.
    ∵=,
    ∴点D的坐标为(2,-8).
    (2)如图,当点F在x轴上方时,设点F的坐标为(x,).过点F作FG⊥x轴于点G,易求得OA=2,则AG=x+2,FG=.
    ∵∠FAB=∠EDB,
    ∴tan∠FAG=tan∠BDE,
    即,
    解得,(舍去).
    当x=7时,y=,
    ∴点F的坐标为(7,).
    当点F在x轴下方时,设同理求得点F的坐标为(5,).
    综上所述,点F的坐标为(7,)或(5,).
    (3)∵点P在x轴上,
    ∴根据菱形的对称性可知点P的坐标为(2,0).
    如图,当MN在x轴上方时,设T为菱形对角线的交点.
    ∵PQ=MN,
    ∴MT=2PT.
    设TP=n,则MT=2n. ∴M(2+2n,n).
    ∵点M在抛物线上,
    ∴,即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    当MN在x轴下方时,设TP=n,得M(2+2n,-n).
    ∵点M在抛物线上,
    ∴,
    即.
    解得,(舍去).
    ∴MN=2MT=4n=.
    综上所述,菱形对角线MN的长为或.
    点睛:
    1.求二次函数的解析式
    (1)已知二次函数过三个点,利用一般式,y=ax2+bx+c().列方程组求二次函数解析式.
    (2)已知二次函数与x轴的两个交点(,利用双根式,y=()求二次函数解析式,而且此时对称轴方程过交点的中点,.
    2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.
    20、.
    【解析】
    试题分析:
    试题解析:原式=
    =
    =
    当x=时,原式=.
    考点:分式的化简求值.
    21、
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值化简,最后一项利用绝对值的代数意义化简,即可得到结果;
    【详解】
    原式=
    =
    =.
    【点睛】
    此题考查实数的混合运算.此题难度不大,注意解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、绝对值等考点的运算.
    22、(1)证明见解析;(2).
    【解析】
    试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;
    (2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.
    试题解析:(1)连结DO.
    ∵AD∥OC,
    ∴∠DAO=∠COB,∠ADO=∠COD.
    又∵OA=OD,
    ∴∠DAO=∠ADO,
    ∴∠COD=∠COB. 3分
    又∵CO=CO, OD=OB
    ∴△COD≌△COB(SAS) 4分
    ∴∠CDO=∠CBO=90°.
    又∵点D在⊙O上,
    ∴CD是⊙O的切线.
    (2)∵△COD≌△COB.
    ∴CD=CB.
    ∵DE=2BC,
    ∴ED=2CD.
    ∵AD∥OC,
    ∴△EDA∽△ECO.
    ∴,
    ∴.
    考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.
    23、(1)见解析;(2)见解析;(3);(4)4.
    【解析】
    (1)根据C点坐标确定原点位置,然后作出坐标系即可;
    (2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
    (3)根据点在坐标系中的位置写出其坐标即可
    (4)利用长方形的面积剪去周围多余三角形的面积即可.
    【详解】
    解:(1)如图所示:
    (2)如图所示:
    (3)结合图形可得:;
    (4) .
    【点睛】
    此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
    24、答案见解析
    【解析】
    根据轴对称的性质作出线段AC的垂直平分线即可得.
    【详解】
    如图所示,直线EF即为所求.
    【点睛】
    本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图.
    25、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    26、(1);(2)AD﹣DC=BD;(3)BD=AD=+1.
    【解析】
    (1)根据全等三角形的性质求出DC,AD,BD之间的数量关系
    (2)过点B作BE⊥BD,交MN于点E.AD交BC于O,
    证明,得到,,
    根据为等腰直角三角形,得到,
    再根据,即可解出答案.
    (3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
    在DA上截取一点H,使得CD=DH=1,则易证,
    由即可得出答案.
    【详解】
    解:(1)如图1中,
    由题意:,
    ∴AE=CD,BE=BD,
    ∴CD+AD=AD+AE=DE,
    ∵是等腰直角三角形,
    ∴DE=BD,
    ∴DC+AD=BD,
    故答案为.
    (2).
    证明:如图,过点B作BE⊥BD,交MN于点E.AD交BC于O.
    ∵,
    ∴,
    ∴.
    ∵,,,
    ∴,
    ∴.又∵,
    ∴,
    ∴,,
    ∴为等腰直角三角形,.
    ∵,
    ∴.
    (3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,△ABD的面积最大.
    此时DG⊥AB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,
    ∴.
    【点睛】
    本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.
    27、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)由于AD∥BC,AB∥CD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证.
    (2)推出∽,再结合,可证得答案.
    【详解】
    (1)证明:∵四边形是平行四边形,
    ∴,,
    ∴, ,
    ∴即.
    (2)∵四边形是平行四边形,
    ∴,又∵,
    ∴即,
    又∵,
    ∴∽,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
    相关试卷

    2023年浙江省嘉兴市嘉善县中考数学一模试卷(含解析): 这是一份2023年浙江省嘉兴市嘉善县中考数学一模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析: 这是一份浙江省温州市苍南县市级名校2022年中考数学最后一模试卷含解析,共22页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。

    2022年山东省济南实验市级名校中考数学最后一模试卷含解析: 这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map