2022届重庆市长寿区中考数学四模试卷含解析
展开
这是一份2022届重庆市长寿区中考数学四模试卷含解析,共19页。试卷主要包含了计算2a2+3a2的结果是,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )
A.73 B.81 C.91 D.109
2.一次函数y=2x+1的图像不经过 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
D.两个角互为邻补角
4.将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
A. B. C. D.
5.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
6.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
7.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
8.下列运算正确的是( )
A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a6
9.下列计算正确的是( )
A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
10.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长 B.的长 C.的长 D.的长
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 .
12.定义一种新运算:x*y=,如2*1==3,则(4*2)*(﹣1)=_____.
13.分解因式:m2n﹣2mn+n= .
14.如图,点A,B是反比例函数y=(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=__.
15.菱形ABCD中,,其周长为32,则菱形面积为____________.
16.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.
三、解答题(共8题,共72分)
17.(8分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点
求m的值及C点坐标;
在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由
为抛物线上一点,它关于直线BC的对称点为Q
当四边形PBQC为菱形时,求点P的坐标;
点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.
18.(8分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项,,,第二道单选题有4个选项,,,,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是,第二道题的正确选项是,解答下列问题:
(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;
(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;
(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.
19.(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.
20.(8分)当=,b=2时,求代数式的值.
21.(8分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
22.(10分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
23.(12分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
求证:BG=FG;若AD=DC=2,求AB的长.
24.如图1,抛物线y=ax2+(a+2)x+2(a≠0),与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.
(1)求抛物线的解析式;
(2)若PN:PM=1:4,求m的值;
(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+的最小值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
试题解析:第①个图形中一共有3个菱形,3=12+2;
第②个图形中共有7个菱形,7=22+3;
第③个图形中共有13个菱形,13=32+4;
…,
第n个图形中菱形的个数为:n2+n+1;
第⑨个图形中菱形的个数92+9+1=1.
故选C.
考点:图形的变化规律.
2、D
【解析】
根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.
【详解】
∵k=2>0,b=1>0,
∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.
故选D.
【点睛】
本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.
3、C
【解析】
熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.
4、D
【解析】
根据“左加右减、上加下减”的原则,
将抛物线向左平移1个单位所得直线解析式为:;
再向下平移3个单位为:.故选D.
5、B
【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可.
详解:A.是轴对称图形,不是中心对称图形;
B.是轴对称图形,也是中心对称图形;
C.是轴对称图形,不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
6、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
7、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
故选:C.
【点睛】
掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
8、D
【解析】
根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.
【详解】
A、a2+a2=2a2,故错误;
B、(a+b)2=a2+2ab+b2,故错误;
C、a6÷a2=a4,故错误;
D、(-2a3)2=4a6,正确;
故选D.
【点睛】
本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.
9、B
【解析】
利用完全平方公式及平方差公式计算即可.
【详解】
解:A、原式=a2-6a+9,本选项错误;
B、原式=a2-9,本选项正确;
C、原式=a2-2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项错误,
故选:B.
【点睛】
本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.
10、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-6
【解析】
分析:∵菱形的两条对角线的长分别是6和4,
∴A(﹣3,2).
∵点A在反比例函数的图象上,
∴,解得k=-6.
【详解】
请在此输入详解!
12、-1
【解析】
利用题中的新定义计算即可求出值.
【详解】
解:根据题中的新定义得:原式=*(﹣1)=3*(﹣1)==﹣1.
故答案为﹣1.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.
13、n(m﹣1)1.
【解析】
先提取公因式n后,再利用完全平方公式分解即可
【详解】
m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
14、1.
【解析】
由三角形BCD为直角三角形,根据已知面积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可.
【详解】
∵BD⊥CD,BD=2,
∴S△BCD=BD•CD=2,
即CD=2.
∵C(2,0),
即OC=2,
∴OD=OC+CD=2+2=1,
∴B(1,2),代入反比例解析式得:k=10,
即y=,
则S△AOC=1.
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键.
15、
【解析】
分析:根据菱形的性质易得AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,再判定△ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在Rt△AOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.
详解:∵菱形ABCD中,其周长为32,
∴AB=BC=CD=DA=8,AC⊥BD, OA=OC,OB=OD,
∵,
∴△ABD为等边三角形,
∴AB=BD=8,
∴OB=4,
在Rt△AOB中,OB=4,AB=8,
根据勾股定理可得OA=4,
∴AC=2AO=,
∴菱形ABCD的面积为:=.
点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.
16、40°
【解析】
由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.
【详解】
解:∵∠A=30°,∠APD=70°,
∴∠C=∠APD﹣∠A=40°,
∵∠B与∠C是对的圆周角,
∴∠B=∠C=40°.
故答案为40°.
【点睛】
此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.
三、解答题(共8题,共72分)
17、,;存在,;或;当时,.
【解析】
(1)用待定系数法求出抛物线解析式;
(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;
(3)①先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;
②先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.
【详解】
解:(1)将B(4,0)代入,解得,m=4,
∴二次函数解析式为,令x=0,得y=4,
∴C(0,4);
(2)存在,理由:∵B(4,0),C(0,4),
∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,
∴,
∴,
∴△=1﹣4b=0,∴b=4,
∴,∴M(2,6);
(3)①如图,∵点P在抛物线上,
∴设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4),
∴线段BC的垂直平分线的解析式为y=x,
∴m=,
∴m=,
∴P(,)或P(,);
②如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,
∵点D在直线BC上,∴D(t,﹣t+4),
∵PD=﹣(﹣t+4)=,BE+CF=4,
∴S四边形PBQC=2S△PDC=2(S△PCD+S△BD)=2(PD×CF+PD×BE)=4PD=
∵0<t<4,
∴当t=2时,S四边形PBQC最大=1.
考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题.
18、(1);(2);(3)一.
【解析】
(1)直接利用概率公式求解;
(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;
(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.
【详解】
解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=;
故答案为;
(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是.理由如下:
画树状图为:(用Z表示正确选项,C表示错误选项)
共有9种等可能的结果数,其中小颖顺利通关的结果数为1,
所以小敏顺利通关的概率=;
(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)
共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=,
由于>,
所以建议小敏在答第一道题时使用“求助”.
【点睛】
本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.
19、11米
【解析】
过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.
【详解】
解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,
则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,
∵△ABC≌△A′B′C′,
∴∠MAE=∠B′MF,
∵∠AEM=∠B′FM=90°,
∴△AMF∽△MB′F,
∴ ,
∴
∴MF= ,
∵
∴
答:旗杆MN的高度约为11米.
【点睛】
本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.
20、,6﹣3.
【解析】
原式=
=,
当a=,b=2时,
原式.
21、2.
【解析】
将原式化简整理,整体代入即可解题.
【详解】
解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
=x1﹣1x+1+x1﹣4x+x1﹣4
=3x1﹣2x﹣3,
∵x1﹣1x﹣1=1
∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
【点睛】
本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
22、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.
【解析】
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
【详解】(1)设A种奖品每件x元,B种奖品每件y元,
根据题意得:,
解得:,
答:A种奖品每件16元,B种奖品每件4元;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,
根据题意得:16a+4(100﹣a)≤900,
解得:a≤,
∵a为整数,
∴a≤41,
答:A种奖品最多购买41件.
【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.
23、(1)证明见解析;(2)AB=
【解析】
(1)证明:∵,DE⊥AC于点F,
∴∠ABC=∠AFE.
∵AC=AE,∠EAF=∠CAB,
∴△ABC≌△AFE
∴AB=AF.
连接AG,
∵AG=AG,AB=AF
∴Rt△ABG≌Rt△AFG
∴BG=FG
(2)解:∵AD=DC,DF⊥AC
∴
∴∠E=30°
∴∠FAD=∠E=30°
∴AB=AF=
24、(1);(2)m=3;(3)
【解析】
(1)本题需先根据图象过A点,代入即可求出解析式;(2)由△OAB∽△PAN可用m表示出PN,且可表示出PM,由条件可得到关于m的方程,则可求得m的值;(3)在y轴上取一点Q,使,可证的△P2OB∽△QOP2,则可求得Q点坐标,则可把AP2+BP2转换为AP2+QP2,利用三角形三边关系可知当A、P2、Q三点在一条线上时,有最小值,则可求出答案.
【详解】
解:(1)∵A(4,0)在抛物线上,
∴0=16a+4(a+2)+2,解得a=﹣,
∴抛物线的解析式为y=;
(2)∵
∴令x=0可得y=2,
∴OB=2,
∵OP=m,
∴AP=4﹣m,
∵PM⊥x轴,
∴△OAB∽△PAN,
∴,
∴,
∴,
∵M在抛物线上,
∴PM=+2,
∵PN:MN=1:3,
∴PN:PM=1:4,
∴,
解得m=3或m=4(舍去);
(3)在y轴上取一点Q,使,如图,
由(2)可知P1(3,0),且OB=2,
∴,且∠P2OB=∠QOP2,
∴△P2OB∽△QOP2,
∴,
∴当Q(0,)时,QP2=,
∴AP2+BP2=AP2+QP2≥AQ,
∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值,
∵A(4,0),Q(0,),
∴AQ==,
即AP2+BP2的最小值为
【点睛】
本题考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里表示三角形的面积及线段和最小值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,难度相对较大.
相关试卷
这是一份重庆市长寿区2022年中考押题数学预测卷含解析,共23页。试卷主要包含了方程x2﹣3x=0的根是,7的相反数是,-sin60°的倒数为,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2022届重庆市外国语学校中考数学四模试卷含解析,共24页。试卷主要包含了下列方程中,没有实数根的是等内容,欢迎下载使用。
这是一份重庆市长寿区川维片区市级名校2021-2022学年中考数学四模试卷含解析