2022届重庆市凤鸣山中学中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 B. C. D.3
2.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
3.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
A. B. C. D.
4.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为( )
A.6 B.12 C.18 D.24
5.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是( )
A. B. C. D.
6.下列命题中,错误的是( )
A.三角形的两边之和大于第三边
B.三角形的外角和等于360°
C.等边三角形既是轴对称图形,又是中心对称图形
D.三角形的一条中线能将三角形分成面积相等的两部分
7.对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )
A.∠α=60°,∠α的补角∠β=120°,∠β>∠α
B.∠α=90°,∠α的补角∠β=90°,∠β=∠α
C.∠α=100°,∠α的补角∠β=80°,∠β<∠α
D.两个角互为邻补角
8.如图,,且.、是上两点,,.若,,,则的长为( )
A. B. C. D.
9.如图的立体图形,从左面看可能是( )
A. B.
C. D.
10.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是( )
A.27° B.34° C.36° D.54°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.
12.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(-3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__.
13.若两个关于 x,y 的二元一次方程组与有相同的解, 则 mn 的值为_____.
14.抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为________.
15.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.
16.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.
18.(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600米到达B处,测得C在点B的北偏西60°方向上.
(1)MN是否穿过原始森林保护区,为什么?(参考数据:≈1.732)
(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
19.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:
(1)调查了________名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;
(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
20.(8分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.
(1)求关于的函数解析式;
(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?
21.(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:
(I)本次随机抽样调查的学生人数为 ,图①中的m的值为 ;
(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.
22.(10分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
23.(12分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.
(1)求证:DE是⊙O的切线;
(2)若tanA=,探究线段AB和BE之间的数量关系,并证明;
(3)在(2)的条件下,若OF=1,求圆O的半径.
24.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.
(1)求反比例函数y=的表达式;
(2)在x轴上是否存在一点P,使得S△AOP=S△AOB,若存在,求所有符合条件点P的坐标;若不存在,简述你的理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,
故选D.
【点睛】
本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.
2、C
【解析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
故答案为C
3、A
【解析】
根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.
【详解】
∵AC=1,CE=2,EG=3,
∴AG=6,
∵△EFG是等边三角形,
∴FG=EG=3,∠AGF=∠FEG=60°,
∵AE=EF=3,
∴∠FAG=∠AFE=30°,
∴∠AFG=90°,
∵△CDE是等边三角形,
∴∠DEC=60°,
∴∠AJE=90°,JE∥FG,
∴△AJE∽△AFG,
∴==,
∴EJ=,
∵∠BCA=∠DCE=∠FEG=60°,
∴∠BCD=∠DEF=60°,
∴∠ACI=∠AEF=120°,
∵∠IAC=∠FAE,
∴△ACI∽△AEF,
∴==,
∴CI=1,DI=1,DJ=,
∴IJ=,
∴=•DI•IJ=××.
故选:A.
【点睛】
本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.
4、B
【解析】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,
故选B.
5、C
【解析】
试题解析:左视图如图所示:
故选C.
6、C
【解析】
根据三角形的性质即可作出判断.
【详解】
解:A、正确,符合三角形三边关系;
B、正确;三角形外角和定理;
C、错误,等边三角形既是轴对称图形,不是中心对称图形;
D、三角形的一条中线能将三角形分成面积相等的两部分,正确.
故选:C.
【点睛】
本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.
7、C
【解析】
熟记反证法的步骤,然后进行判断即可.
解答:解:举反例应该是证明原命题不正确,即要举出不符合叙述的情况;
A、∠α的补角∠β>∠α,符合假命题的结论,故A错误;
B、∠α的补角∠β=∠α,符合假命题的结论,故B错误;
C、∠α的补角∠β<∠α,与假命题结论相反,故C正确;
D、由于无法说明两角具体的大小关系,故D错误.
故选C.
8、D
【解析】
分析:
详解:如图,
∵AB⊥CD,CE⊥AD,
∴∠1=∠2,
又∵∠3=∠4,
∴180°-∠1-∠4=180°-∠2-∠3,
即∠A=∠C.
∵BF⊥AD,
∴∠CED=∠BFD=90°,
∵AB=CD,
∴△ABF≌△CDE,
∴AF=CE=a,ED=BF=b,
又∵EF=c,
∴AD=a+b-c.
故选:D.
点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.
9、A
【解析】
根据三视图的性质即可解题.
【详解】
解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
故选A.
【点睛】
本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
10、C
【解析】
由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.
【详解】
解:∵AB与⊙O相切于点A,
∴OA⊥BA.
∴∠OAB=90°.
∵∠CDA=27°,
∴∠BOA=54°.
∴∠B=90°-54°=36°.
故选C.
考点:切线的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
试题解析:如图,
∵菱形ABCD中,BD=8,AB=5,
∴AC⊥BD,OB=BD=4,
∴OA==3,
∴AC=2OA=6,
∴这个菱形的面积为:AC•BD=×6×8=1.
12、(-2,7).
【解析】
解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,
∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,
∴∠BAD=90°,AD=BC,
∴∠OAB+∠DAF=90°,
∴∠ABO=∠DAF,
∴△AOB∽△DFA,
∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(﹣3,0),B(0,6),
∴AB:AD=3:2,OA=3,OB=6,
∴DF=2,AF=4,
∴OF=OA+AF=7,
∴点D的坐标为:(﹣7,2),
∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).
设直线BC的解析式为:y=kx+b,
则解得:
∴直线BC的解析式为:y=﹣x+6②,
联立①②得: 或(舍去),
∴点E的坐标为:(﹣2,7).
故答案为(﹣2,7).
13、1
【解析】
联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.
【详解】
联立得:,
①×2+②,得:10x=20,
解得:x=2,
将x=2代入①,得:1-y=1,
解得:y=0,
则,
将x=2、y=0代入,得:,
解得:,
则mn=1,
故答案为1.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
14、
【解析】
根据概率的计算方法求解即可.
【详解】
∵第4次抛掷一枚均匀的硬币时,正面和反面朝上的概率相等,
∴第4次正面朝上的概率为.
故答案为:.
【点睛】
此题考查了概率公式的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
15、
【解析】
解:∵四边形ABCO是矩形,AB=1,
∴设B(m,1),∴OA=BC=m,
∵四边形OA′B′D与四边形OABD关于直线OD对称,
∴OA′=OA=m,∠A′OD=∠AOD=30°
∴∠A′OA=60°,
过A′作A′E⊥OA于E,
∴OE=m,A′E=m,
∴A′(m,m),
∵反比例函数(k≠0)的图象恰好经过点A′,B,
∴ m•m=m,∴m=,∴k=
故答案为
16、4
【解析】
∵四边形MNPQ是矩形,
∴NQ=MP,
∴当MP最大时,NQ就最大.
∵点M是抛物线在轴上方部分图象上的一点,且MP⊥轴于点P,
∴当点M是抛物线的顶点时,MP的值最大.
∵,
∴抛物线的顶点坐标为(2,4),
∴当点M的坐标为(2,4)时,MP最大=4,
∴对角线NQ的最大值为4.
三、解答题(共8题,共72分)
17、(1)证明见解析;(1)2
【解析】
分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
(1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.
点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
18、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.
【解析】
试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离.要构造直角三角形,再解直角三角形;
(2)根据题意列方程求解.
试题解析:(1)如图,过C作CH⊥AB于H,
设CH=x,由已知有∠EAC=45°, ∠FBC=60°
则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中, tan∠HBC=
∴HB===x,
∵AH+HB=AB
∴x+x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.
(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5
根据题意得:=(1+25%)×,解得:y=25知:y=25的根.
答:原计划完成这项工程需要25天.
19、50 见解析(3)115.2° (4)
【解析】
试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;
(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;
(3)根据圆心角的度数=360 º×它所占的百分比计算;
(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.
解:(1)由题意可知该班的总人数=15÷30%=50(名)
故答案为50;
(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)
补全条形统计图如图所示:
(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,
故答案为115.2°;
(4)画树状图如图.
由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
所以P(恰好选出一男一女)==.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.
20、;(2)骑自行车的学生先到达百花公园,先到了10分钟.
【解析】
(1)根据函数图象中的数据可以求得关于的函数解析式;
(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.
【详解】
解:(1)设关于的函数解析式是,
,得,
即关于的函数解析式是;
(2)由图象可知,
步行的学生的速度为:千米/分钟,
步行同学到达百花公园的时间为:(分钟),
当时, ,得,
,
答:骑自行车的学生先到达百花公园,先到了10分钟.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
21、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人
【解析】
(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;
(II)根据众数、中位数和平均数的定义计算可得;
(III)用总人数乘以样本中5天、6天的百分比之和可得.
【详解】
解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,
故答案为150、14;
(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,
平均数为=3.5天;
(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.
【点睛】
此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.
22、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
23、(1)答案见解析;(2)AB=1BE;(1)1.
【解析】
试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;
(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x,进而得出OE=1+2x,最后用勾股定理即可得出结论.
试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;
(2)线段AB、BE之间的数量关系为:AB=1BE.证明如下:
∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴.∵Rt△ABD中,tanA==,∴=,
∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=1BE;
(1)设BE=x,则DE=EF=2x,AB=1x,半径OD=x.∵OF=1,∴OE=1+2x.
在Rt△ODE中,由勾股定理可得:(x)2+(2x)2=(1+2x)2,∴x=﹣(舍)或x=2,∴圆O的半径为1.
点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.
24、(1)y=;(1)(﹣1,0)或(1,0)
【解析】
(1)把A的坐标代入反比例函数的表达式,即可求出答案;
(1)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOPS△AOB,求出OP长,即可求出答案.
【详解】
(1)把A(,1)代入反比例函数y得:k=1,所以反比例函数的表达式为y;
(1)∵A(,1),OA⊥AB,AB⊥x轴于C,∴OC,AC=1,OA1.
∵tanA,∴∠A=60°.
∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA•OB1×1.
∵S△AOPS△AOB,∴OP×AC.
∵AC=1,∴OP=1,∴点P的坐标为(﹣1,0)或(1,0).
【点睛】
本题考查了用待定系数法求反比例函数的解析式,三角形的面积,解直角三角形等知识点,求出反比例函数的解析式和求出△AOB的面积是解答此题的关键.
重庆市凤鸣山中学2021-2022学年中考数学猜题卷含解析: 这是一份重庆市凤鸣山中学2021-2022学年中考数学猜题卷含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,下列各运算中,计算正确的是,九年级等内容,欢迎下载使用。
2022年重庆市重点达标名校中考数学考前最后一卷含解析: 这是一份2022年重庆市重点达标名校中考数学考前最后一卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,下列方程有实数根的是等内容,欢迎下载使用。
2022年河北省青龙满族自治县祖山兰亭中学中考考前最后一卷数学试卷含解析: 这是一份2022年河北省青龙满族自治县祖山兰亭中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列说法,下列运算正确的是等内容,欢迎下载使用。